基于遗传算法的人工神经网络结构进化设计

N. Moharamzade, F. Farokhi
{"title":"基于遗传算法的人工神经网络结构进化设计","authors":"N. Moharamzade, F. Farokhi","doi":"10.1109/CINC.2010.5643748","DOIUrl":null,"url":null,"abstract":"Determining the optimum structure for an Artificial Network is an important design step in almost all the artificial intelligence systems which are based on Neural or neuro-fuzzy networks. In this paper a genetic algorithm based solution is presented and tested over real world databases and for single layer and multiple layer networks and it has been shown that the determined network structures has the best accuracy and the optimized topology as well.","PeriodicalId":227004,"journal":{"name":"2010 Second International Conference on Computational Intelligence and Natural Computing","volume":"8 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolutionary design of ANN structure using genetic algorithm\",\"authors\":\"N. Moharamzade, F. Farokhi\",\"doi\":\"10.1109/CINC.2010.5643748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining the optimum structure for an Artificial Network is an important design step in almost all the artificial intelligence systems which are based on Neural or neuro-fuzzy networks. In this paper a genetic algorithm based solution is presented and tested over real world databases and for single layer and multiple layer networks and it has been shown that the determined network structures has the best accuracy and the optimized topology as well.\",\"PeriodicalId\":227004,\"journal\":{\"name\":\"2010 Second International Conference on Computational Intelligence and Natural Computing\",\"volume\":\"8 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Computational Intelligence and Natural Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINC.2010.5643748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2010.5643748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在几乎所有基于神经网络或神经模糊网络的人工智能系统中,确定人工网络的最优结构是一个重要的设计步骤。本文提出了一种基于遗传算法的解决方案,并在实际数据库以及单层和多层网络上进行了测试,结果表明,所确定的网络结构具有最佳的精度和优化的拓扑结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolutionary design of ANN structure using genetic algorithm
Determining the optimum structure for an Artificial Network is an important design step in almost all the artificial intelligence systems which are based on Neural or neuro-fuzzy networks. In this paper a genetic algorithm based solution is presented and tested over real world databases and for single layer and multiple layer networks and it has been shown that the determined network structures has the best accuracy and the optimized topology as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary design of ANN structure using genetic algorithm Performance analysis of spread spectrum communication system in fading enviornment and Interference Comprehensive evaluation of forest industries based on rough sets and artificial neural network A new descent algorithm with curve search rule for unconstrained minimization A multi-agent simulation for intelligence economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1