磁共振图像分割特征的设计与选择

Meijuan Yang, Yuan Yuan, Xuelong Li, Pingkun Yan
{"title":"磁共振图像分割特征的设计与选择","authors":"Meijuan Yang, Yuan Yuan, Xuelong Li, Pingkun Yan","doi":"10.1109/ACPR.2011.6166535","DOIUrl":null,"url":null,"abstract":"Deformable models have obtained considerable success in medical image segmentation, due to its ability of capturing the shape variation of the target structure. Boundary feature is used to guide contour deformation, which plays an decisive part in deformable model based segmentation. However, it is still a challenging task to obtain a distinctive image feature to describe the boundaries, since boundaries are not necessarily in accordance with edges or ridges. Another challenge is to infer the shape for the given image appearance. In this paper, the anatomical structures from MR images are aimed to be segmented. First, a new normal vector feature profile (NVFP) is employed to describe the local image appearance of a contour point formed by a series of modified SIFT local descriptors along the normal direction of that point. Second, the shape of the target structure is inferred by matching two image appearances of the test image and learned image appearance. A new match function is designed to incorporate the new NVFP to deformable models. During the optimization procedure of the segmentation algorithm, the nearest neighbor approach is used to compute the displacement of each contour point to guide the global shape deformation. Experimental results on prostate and bladder MR images show that the proposed method has a better performance than the previous method.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"114 26","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing and selecting features for MR image segmentation\",\"authors\":\"Meijuan Yang, Yuan Yuan, Xuelong Li, Pingkun Yan\",\"doi\":\"10.1109/ACPR.2011.6166535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deformable models have obtained considerable success in medical image segmentation, due to its ability of capturing the shape variation of the target structure. Boundary feature is used to guide contour deformation, which plays an decisive part in deformable model based segmentation. However, it is still a challenging task to obtain a distinctive image feature to describe the boundaries, since boundaries are not necessarily in accordance with edges or ridges. Another challenge is to infer the shape for the given image appearance. In this paper, the anatomical structures from MR images are aimed to be segmented. First, a new normal vector feature profile (NVFP) is employed to describe the local image appearance of a contour point formed by a series of modified SIFT local descriptors along the normal direction of that point. Second, the shape of the target structure is inferred by matching two image appearances of the test image and learned image appearance. A new match function is designed to incorporate the new NVFP to deformable models. During the optimization procedure of the segmentation algorithm, the nearest neighbor approach is used to compute the displacement of each contour point to guide the global shape deformation. Experimental results on prostate and bladder MR images show that the proposed method has a better performance than the previous method.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"114 26\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可变形模型由于能够捕捉目标结构的形状变化,在医学图像分割中取得了相当大的成功。利用边界特征指导轮廓变形,在基于变形模型的分割中起着决定性的作用。然而,由于边界不一定与边缘或脊一致,因此如何获得鲜明的图像特征来描述边界仍然是一项具有挑战性的任务。另一个挑战是推断给定图像外观的形状。本文的目的是对磁共振图像中的解剖结构进行分割。首先,利用一种新的法向量特征轮廓(NVFP)来描述由一系列改进的SIFT局部描述子沿轮廓点的法线方向形成的轮廓点的局部图像外观;其次,通过匹配测试图像和学习图像的两个图像外观来推断目标结构的形状;设计了一个新的匹配函数,将新的NVFP结合到可变形模型中。在分割算法的优化过程中,采用最近邻法计算每个轮廓点的位移,以指导全局形状变形。在前列腺和膀胱MR图像上的实验结果表明,该方法具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing and selecting features for MR image segmentation
Deformable models have obtained considerable success in medical image segmentation, due to its ability of capturing the shape variation of the target structure. Boundary feature is used to guide contour deformation, which plays an decisive part in deformable model based segmentation. However, it is still a challenging task to obtain a distinctive image feature to describe the boundaries, since boundaries are not necessarily in accordance with edges or ridges. Another challenge is to infer the shape for the given image appearance. In this paper, the anatomical structures from MR images are aimed to be segmented. First, a new normal vector feature profile (NVFP) is employed to describe the local image appearance of a contour point formed by a series of modified SIFT local descriptors along the normal direction of that point. Second, the shape of the target structure is inferred by matching two image appearances of the test image and learned image appearance. A new match function is designed to incorporate the new NVFP to deformable models. During the optimization procedure of the segmentation algorithm, the nearest neighbor approach is used to compute the displacement of each contour point to guide the global shape deformation. Experimental results on prostate and bladder MR images show that the proposed method has a better performance than the previous method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1