使用关联分类和混合特征子集选择预测心脏病风险评分

M. Jabbar, P. Chandra, B. Deekshatulu
{"title":"使用关联分类和混合特征子集选择预测心脏病风险评分","authors":"M. Jabbar, P. Chandra, B. Deekshatulu","doi":"10.1109/ISDA.2012.6416610","DOIUrl":null,"url":null,"abstract":"Medical data mining is the search for relationships and patterns within the medical data that could provide useful knowledge for effective medical diagnosis. Extracting useful information from these data bases can lead to discovery of rules for later diagnosis tools. Generally medical data bases are highly voluminous in nature. If a training data set contains irrelevant and redundant features classification may produce less accurate results. Feature selection as a pre-processing step in used to reduce dimensionality, removing irrelevant data and increasing accuracy and improves comprehensibility. Associative classification is a recent and rewarding technique that applies the methodology of association into classification and achieves high classification accuracy. Most associative classification algorithms adopt exhaustive search algorithms like in Apriori, and generate huge no. of rules from which a set of high quality of rules are chosen to construct efficient classifier. Hence generating a small set of high quality rules to build classifier is a challenging task. Cardiovascular diseases are the leading cause of death globally and in India more deaths are due to CHD. Cardiovascular disease is an increasingly an important cause of death in Andhra Pradesh. Hence there is an urgent need to develop a system to predict the heart disease of people. This paper discusses prediction of risk score for heart disease in Andhra Pradesh. We generated class association rules using feature subset selection. These generated rules will help physicians to predict the heart disease of a patient.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":" 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Prediction of risk score for heart disease using associative classification and hybrid feature subset selection\",\"authors\":\"M. Jabbar, P. Chandra, B. Deekshatulu\",\"doi\":\"10.1109/ISDA.2012.6416610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medical data mining is the search for relationships and patterns within the medical data that could provide useful knowledge for effective medical diagnosis. Extracting useful information from these data bases can lead to discovery of rules for later diagnosis tools. Generally medical data bases are highly voluminous in nature. If a training data set contains irrelevant and redundant features classification may produce less accurate results. Feature selection as a pre-processing step in used to reduce dimensionality, removing irrelevant data and increasing accuracy and improves comprehensibility. Associative classification is a recent and rewarding technique that applies the methodology of association into classification and achieves high classification accuracy. Most associative classification algorithms adopt exhaustive search algorithms like in Apriori, and generate huge no. of rules from which a set of high quality of rules are chosen to construct efficient classifier. Hence generating a small set of high quality rules to build classifier is a challenging task. Cardiovascular diseases are the leading cause of death globally and in India more deaths are due to CHD. Cardiovascular disease is an increasingly an important cause of death in Andhra Pradesh. Hence there is an urgent need to develop a system to predict the heart disease of people. This paper discusses prediction of risk score for heart disease in Andhra Pradesh. We generated class association rules using feature subset selection. These generated rules will help physicians to predict the heart disease of a patient.\",\"PeriodicalId\":370150,\"journal\":{\"name\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"volume\":\" 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2012.6416610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

医疗数据挖掘是在医疗数据中搜索可以为有效的医疗诊断提供有用知识的关系和模式。从这些数据库中提取有用的信息可以为以后的诊断工具发现规则。一般来说,医学数据库本质上是非常庞大的。如果训练数据集包含不相关和冗余的特征,分类可能产生不太准确的结果。特征选择作为预处理步骤,用于降维,去除不相关数据,提高准确性和可理解性。关联分类是一种将关联方法应用到分类中并获得较高分类准确率的新兴分类技术。大多数关联分类算法采用像Apriori这样的穷举搜索算法,产生大量的no。从规则中选择一组高质量的规则来构建高效的分类器。因此,生成少量的高质量规则集来构建分类器是一项具有挑战性的任务。心血管疾病是全球死亡的主要原因,在印度,冠心病导致的死亡人数更多。在安得拉邦,心血管疾病日益成为一个重要的死亡原因。因此,迫切需要开发一种预测人类心脏病的系统。本文讨论了安得拉邦心脏病风险评分的预测。我们使用特征子集选择生成类关联规则。这些生成的规则将帮助医生预测病人的心脏病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of risk score for heart disease using associative classification and hybrid feature subset selection
Medical data mining is the search for relationships and patterns within the medical data that could provide useful knowledge for effective medical diagnosis. Extracting useful information from these data bases can lead to discovery of rules for later diagnosis tools. Generally medical data bases are highly voluminous in nature. If a training data set contains irrelevant and redundant features classification may produce less accurate results. Feature selection as a pre-processing step in used to reduce dimensionality, removing irrelevant data and increasing accuracy and improves comprehensibility. Associative classification is a recent and rewarding technique that applies the methodology of association into classification and achieves high classification accuracy. Most associative classification algorithms adopt exhaustive search algorithms like in Apriori, and generate huge no. of rules from which a set of high quality of rules are chosen to construct efficient classifier. Hence generating a small set of high quality rules to build classifier is a challenging task. Cardiovascular diseases are the leading cause of death globally and in India more deaths are due to CHD. Cardiovascular disease is an increasingly an important cause of death in Andhra Pradesh. Hence there is an urgent need to develop a system to predict the heart disease of people. This paper discusses prediction of risk score for heart disease in Andhra Pradesh. We generated class association rules using feature subset selection. These generated rules will help physicians to predict the heart disease of a patient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of risk score for heart disease using associative classification and hybrid feature subset selection WSDL-TC: Collaborative customization of web services Knowledge representation and reasoning based on generalised fuzzy Petri nets Interval-valued fuzzy graph representation of concept lattice Community optimization: Function optimization by a simulated web community
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1