John Saint, D. Gašević, W. Matcha, Nora'ayu Ahmad Uzir, A. Pardo
{"title":"结合分析方法解锁自我调节学习的顺序和时间模式","authors":"John Saint, D. Gašević, W. Matcha, Nora'ayu Ahmad Uzir, A. Pardo","doi":"10.1145/3375462.3375487","DOIUrl":null,"url":null,"abstract":"The temporal and sequential nature of learning is receiving increasing focus in Learning Analytics circles. The desire to embed studies in recognised theories of self-regulated learning (SRL) has led researchers to conceptualise learning as a process that unfolds and changes over time. To that end, a body of research knowledge is growing which states that traditional frequency-based correlational studies are limited in narrative impact. To further explore this, we analysed trace data collected from online activities of a sample of 239 computer engineering undergraduate students enrolled on a course that followed a flipped class-room pedagogy. We employed SRL categorisation of micro-level processes based on a recognised model of learning, and then analysed the data using: 1) simple frequency measures; 2) epistemic network analysis; 3) temporal process mining; and 4) stochastic process mining. We found that a combination of analyses provided us with a richer insight into SRL behaviours than any one single method. We found that better performing learners employed more optimal behaviours in their navigation through the course's learning management system.","PeriodicalId":355800,"journal":{"name":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","volume":" 42","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Combining analytic methods to unlock sequential and temporal patterns of self-regulated learning\",\"authors\":\"John Saint, D. Gašević, W. Matcha, Nora'ayu Ahmad Uzir, A. Pardo\",\"doi\":\"10.1145/3375462.3375487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The temporal and sequential nature of learning is receiving increasing focus in Learning Analytics circles. The desire to embed studies in recognised theories of self-regulated learning (SRL) has led researchers to conceptualise learning as a process that unfolds and changes over time. To that end, a body of research knowledge is growing which states that traditional frequency-based correlational studies are limited in narrative impact. To further explore this, we analysed trace data collected from online activities of a sample of 239 computer engineering undergraduate students enrolled on a course that followed a flipped class-room pedagogy. We employed SRL categorisation of micro-level processes based on a recognised model of learning, and then analysed the data using: 1) simple frequency measures; 2) epistemic network analysis; 3) temporal process mining; and 4) stochastic process mining. We found that a combination of analyses provided us with a richer insight into SRL behaviours than any one single method. We found that better performing learners employed more optimal behaviours in their navigation through the course's learning management system.\",\"PeriodicalId\":355800,\"journal\":{\"name\":\"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge\",\"volume\":\" 42\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375462.3375487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375462.3375487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combining analytic methods to unlock sequential and temporal patterns of self-regulated learning
The temporal and sequential nature of learning is receiving increasing focus in Learning Analytics circles. The desire to embed studies in recognised theories of self-regulated learning (SRL) has led researchers to conceptualise learning as a process that unfolds and changes over time. To that end, a body of research knowledge is growing which states that traditional frequency-based correlational studies are limited in narrative impact. To further explore this, we analysed trace data collected from online activities of a sample of 239 computer engineering undergraduate students enrolled on a course that followed a flipped class-room pedagogy. We employed SRL categorisation of micro-level processes based on a recognised model of learning, and then analysed the data using: 1) simple frequency measures; 2) epistemic network analysis; 3) temporal process mining; and 4) stochastic process mining. We found that a combination of analyses provided us with a richer insight into SRL behaviours than any one single method. We found that better performing learners employed more optimal behaviours in their navigation through the course's learning management system.