Alena Rodionova, E. Bartocci, D. Ničković, R. Grosu
{"title":"时序逻辑作为滤波","authors":"Alena Rodionova, E. Bartocci, D. Ničković, R. Grosu","doi":"10.1145/2883817.2883839","DOIUrl":null,"url":null,"abstract":"We show that metric temporal logic (MTL) the extension of linear temporal logic to real time, can be viewed as linear time-invariant filtering, by interpreting addition, multiplication, and their neutral elements, over the idempotent dioid (max,min,0,1). Moreover, by interpreting these operators over the field of reals (+,x,0,1), one can associate various quantitative semantics to a metric-temporal-logic formula, depending on the filter's kernel used: square, rounded-square, Gaussian, low-pass, band-pass, or high-pass. This remarkable connection between filtering and metric temporal logic allows us to freely navigate between the two, and to regard signal-feature detection as logical inference. To the best of our knowledge, this connection has not been established before. We prove that our qualitative, filtering semantics is identical to the classical MTL semantics. We also provide a quantitative semantics for MTL, which measures the normalized, maximum number of times a formula is satisfied within its associated kernel, by a given signal. We show that this semantics is sound, in the sense that, if its measure is 0, then the formula is not satisfied, and it is satisfied otherwise. We have implemented both of our semantics in Matlab, and illustrate their properties on various formulas and signals, by plotting their computed measures.","PeriodicalId":337926,"journal":{"name":"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control","volume":"48 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Temporal Logic as Filtering\",\"authors\":\"Alena Rodionova, E. Bartocci, D. Ničković, R. Grosu\",\"doi\":\"10.1145/2883817.2883839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that metric temporal logic (MTL) the extension of linear temporal logic to real time, can be viewed as linear time-invariant filtering, by interpreting addition, multiplication, and their neutral elements, over the idempotent dioid (max,min,0,1). Moreover, by interpreting these operators over the field of reals (+,x,0,1), one can associate various quantitative semantics to a metric-temporal-logic formula, depending on the filter's kernel used: square, rounded-square, Gaussian, low-pass, band-pass, or high-pass. This remarkable connection between filtering and metric temporal logic allows us to freely navigate between the two, and to regard signal-feature detection as logical inference. To the best of our knowledge, this connection has not been established before. We prove that our qualitative, filtering semantics is identical to the classical MTL semantics. We also provide a quantitative semantics for MTL, which measures the normalized, maximum number of times a formula is satisfied within its associated kernel, by a given signal. We show that this semantics is sound, in the sense that, if its measure is 0, then the formula is not satisfied, and it is satisfied otherwise. We have implemented both of our semantics in Matlab, and illustrate their properties on various formulas and signals, by plotting their computed measures.\",\"PeriodicalId\":337926,\"journal\":{\"name\":\"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control\",\"volume\":\"48 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2883817.2883839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2883817.2883839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that metric temporal logic (MTL) the extension of linear temporal logic to real time, can be viewed as linear time-invariant filtering, by interpreting addition, multiplication, and their neutral elements, over the idempotent dioid (max,min,0,1). Moreover, by interpreting these operators over the field of reals (+,x,0,1), one can associate various quantitative semantics to a metric-temporal-logic formula, depending on the filter's kernel used: square, rounded-square, Gaussian, low-pass, band-pass, or high-pass. This remarkable connection between filtering and metric temporal logic allows us to freely navigate between the two, and to regard signal-feature detection as logical inference. To the best of our knowledge, this connection has not been established before. We prove that our qualitative, filtering semantics is identical to the classical MTL semantics. We also provide a quantitative semantics for MTL, which measures the normalized, maximum number of times a formula is satisfied within its associated kernel, by a given signal. We show that this semantics is sound, in the sense that, if its measure is 0, then the formula is not satisfied, and it is satisfied otherwise. We have implemented both of our semantics in Matlab, and illustrate their properties on various formulas and signals, by plotting their computed measures.