时序逻辑作为滤波

Alena Rodionova, E. Bartocci, D. Ničković, R. Grosu
{"title":"时序逻辑作为滤波","authors":"Alena Rodionova, E. Bartocci, D. Ničković, R. Grosu","doi":"10.1145/2883817.2883839","DOIUrl":null,"url":null,"abstract":"We show that metric temporal logic (MTL) the extension of linear temporal logic to real time, can be viewed as linear time-invariant filtering, by interpreting addition, multiplication, and their neutral elements, over the idempotent dioid (max,min,0,1). Moreover, by interpreting these operators over the field of reals (+,x,0,1), one can associate various quantitative semantics to a metric-temporal-logic formula, depending on the filter's kernel used: square, rounded-square, Gaussian, low-pass, band-pass, or high-pass. This remarkable connection between filtering and metric temporal logic allows us to freely navigate between the two, and to regard signal-feature detection as logical inference. To the best of our knowledge, this connection has not been established before. We prove that our qualitative, filtering semantics is identical to the classical MTL semantics. We also provide a quantitative semantics for MTL, which measures the normalized, maximum number of times a formula is satisfied within its associated kernel, by a given signal. We show that this semantics is sound, in the sense that, if its measure is 0, then the formula is not satisfied, and it is satisfied otherwise. We have implemented both of our semantics in Matlab, and illustrate their properties on various formulas and signals, by plotting their computed measures.","PeriodicalId":337926,"journal":{"name":"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control","volume":"48 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Temporal Logic as Filtering\",\"authors\":\"Alena Rodionova, E. Bartocci, D. Ničković, R. Grosu\",\"doi\":\"10.1145/2883817.2883839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that metric temporal logic (MTL) the extension of linear temporal logic to real time, can be viewed as linear time-invariant filtering, by interpreting addition, multiplication, and their neutral elements, over the idempotent dioid (max,min,0,1). Moreover, by interpreting these operators over the field of reals (+,x,0,1), one can associate various quantitative semantics to a metric-temporal-logic formula, depending on the filter's kernel used: square, rounded-square, Gaussian, low-pass, band-pass, or high-pass. This remarkable connection between filtering and metric temporal logic allows us to freely navigate between the two, and to regard signal-feature detection as logical inference. To the best of our knowledge, this connection has not been established before. We prove that our qualitative, filtering semantics is identical to the classical MTL semantics. We also provide a quantitative semantics for MTL, which measures the normalized, maximum number of times a formula is satisfied within its associated kernel, by a given signal. We show that this semantics is sound, in the sense that, if its measure is 0, then the formula is not satisfied, and it is satisfied otherwise. We have implemented both of our semantics in Matlab, and illustrate their properties on various formulas and signals, by plotting their computed measures.\",\"PeriodicalId\":337926,\"journal\":{\"name\":\"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control\",\"volume\":\"48 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2883817.2883839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2883817.2883839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

我们证明度量时间逻辑(MTL)是线性时间逻辑的实时扩展,可以被视为线性时不变滤波,通过解释幂等二类(max,min,0,1)上的加法,乘法及其中性元素。此外,通过在实数域(+,x,0,1)上解释这些运算符,可以将各种定量语义与度量-时间-逻辑公式相关联,这取决于所使用的滤波器的内核:方形、圆方形、高斯、低通、带通或高通。滤波和度量时间逻辑之间的这种显著联系使我们能够在两者之间自由地导航,并将信号特征检测视为逻辑推理。据我们所知,这种联系以前从未建立过。我们证明了我们的定性过滤语义与经典MTL语义相同。我们还为MTL提供了一个定量语义,它测量一个公式在其相关核中被给定信号满足的规范化的最大次数。我们证明这个语义是合理的,在这个意义上,如果它的测度是0,那么这个公式是不满足的,否则它是满足的。我们已经在Matlab中实现了这两个语义,并通过绘制它们的计算度量来说明它们在各种公式和信号上的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temporal Logic as Filtering
We show that metric temporal logic (MTL) the extension of linear temporal logic to real time, can be viewed as linear time-invariant filtering, by interpreting addition, multiplication, and their neutral elements, over the idempotent dioid (max,min,0,1). Moreover, by interpreting these operators over the field of reals (+,x,0,1), one can associate various quantitative semantics to a metric-temporal-logic formula, depending on the filter's kernel used: square, rounded-square, Gaussian, low-pass, band-pass, or high-pass. This remarkable connection between filtering and metric temporal logic allows us to freely navigate between the two, and to regard signal-feature detection as logical inference. To the best of our knowledge, this connection has not been established before. We prove that our qualitative, filtering semantics is identical to the classical MTL semantics. We also provide a quantitative semantics for MTL, which measures the normalized, maximum number of times a formula is satisfied within its associated kernel, by a given signal. We show that this semantics is sound, in the sense that, if its measure is 0, then the formula is not satisfied, and it is satisfied otherwise. We have implemented both of our semantics in Matlab, and illustrate their properties on various formulas and signals, by plotting their computed measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Formal Analysis of Robustness at Model and Code Level Robust Asymptotic Stabilization of Hybrid Systems using Control Lyapunov Functions SCOTS: A Tool for the Synthesis of Symbolic Controllers Case Studies in Data-Driven Verification of Dynamical Systems Parallelotope Bundles for Polynomial Reachability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1