结合声学和电磁传感器信号处理的语音降噪

L. Ng, G. Burnett, J. Holzrichter, T. Gable
{"title":"结合声学和电磁传感器信号处理的语音降噪","authors":"L. Ng, G. Burnett, J. Holzrichter, T. Gable","doi":"10.1109/ICASSP.2000.861925","DOIUrl":null,"url":null,"abstract":"Low power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference. This greatly enhances the quality and quantify of information for many speech related applications (see Holzrichter, Burnett, Ng, and Lea, J. Acoustic. Soc. Am. 103 (1) 622 (1998)). By using combined glottal-EM-sensor-and acoustic-signals, segments of voiced, unvoiced, and no-speech can be reliably defined. Real-time de-noising filters can be constructed to remove noise from the user's corresponding speech signal.","PeriodicalId":164817,"journal":{"name":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","volume":"50 s27","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Denoising of human speech using combined acoustic and EM sensor signal processing\",\"authors\":\"L. Ng, G. Burnett, J. Holzrichter, T. Gable\",\"doi\":\"10.1109/ICASSP.2000.861925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference. This greatly enhances the quality and quantify of information for many speech related applications (see Holzrichter, Burnett, Ng, and Lea, J. Acoustic. Soc. Am. 103 (1) 622 (1998)). By using combined glottal-EM-sensor-and acoustic-signals, segments of voiced, unvoiced, and no-speech can be reliably defined. Real-time de-noising filters can be constructed to remove noise from the user's corresponding speech signal.\",\"PeriodicalId\":164817,\"journal\":{\"name\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"volume\":\"50 s27\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2000.861925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2000.861925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

低功率类似雷达的电磁传感器使得在没有声音干扰的情况下实时测量人类语音产生系统的特性成为可能。这大大提高了许多语音相关应用的信息质量和量化(见Holzrichter, Burnett, Ng, and Lea, J. Acoustic)。Soc。Am. 103(1) 622(1998))。通过结合声门电磁传感器和声学信号,可以可靠地定义浊音、非浊音和非浊音段。可以构建实时去噪滤波器来去除用户相应语音信号中的噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Denoising of human speech using combined acoustic and EM sensor signal processing
Low power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference. This greatly enhances the quality and quantify of information for many speech related applications (see Holzrichter, Burnett, Ng, and Lea, J. Acoustic. Soc. Am. 103 (1) 622 (1998)). By using combined glottal-EM-sensor-and acoustic-signals, segments of voiced, unvoiced, and no-speech can be reliably defined. Real-time de-noising filters can be constructed to remove noise from the user's corresponding speech signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase-based multidimensional volume registration Generation of optimum signature base sequences for speech signals Denoising of human speech using combined acoustic and EM sensor signal processing New estimation technique for a class of chaotic signals Inversion of block matrices with block banded inverses: application to Kalman-Bucy filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1