一种基于抽样的时间不确定性异构联盟调度方法

Andrew Messing, Jacopo Banfi, M. Stadler, Ethan Stump, H. Ravichandar, N. Roy, S. Hutchinson
{"title":"一种基于抽样的时间不确定性异构联盟调度方法","authors":"Andrew Messing, Jacopo Banfi, M. Stadler, Ethan Stump, H. Ravichandar, N. Roy, S. Hutchinson","doi":"10.15607/RSS.2023.XIX.107","DOIUrl":null,"url":null,"abstract":"—Scheduling algorithms for real-world heterogeneous multi-robot teams must be able to reason about temporal uncertainty in the world model in order to create plans that are tolerant to the risk of unexpected delays. To this end, we present a novel sampling-based risk-aware approach for solving Heterogeneous Coalition Scheduling with Temporal Uncertainty (HCSTU) problems, which does not require any assumptions regarding the specific underlying cause of the temporal uncertainty or the specific duration distributions. Our approach computes a schedule which obeys the temporal constraints of a small number of heuristically-selected sample scenarios by solving a Mixed-Integer Linear Program, along with an upper bound on the schedule execution time. Then, it uses a hypothesis testing method, the Sequential Probability Ratio Test, to provide a probabilistic guarantee that the upper bound on the execu- tion time will be respected for a user-specified risk tolerance. With extensive experiments, we demonstrate that our approach empirically respects the risk tolerance, and generates solutions of comparable or better quality than state-of-the-art approaches while being an order of magnitude faster to compute on average. Finally, we demonstrate how robust schedules generated by our approach can be incorporated as solutions to subproblems within the broader Simultaneous Task Allocation and Planning with Spatiotemporal Constraints problem to both guide and expedite the search for solutions of higher quality and lower risk.","PeriodicalId":248720,"journal":{"name":"Robotics: Science and Systems XIX","volume":"3 s4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sampling-Based Approach for Heterogeneous Coalition Scheduling with Temporal Uncertainty\",\"authors\":\"Andrew Messing, Jacopo Banfi, M. Stadler, Ethan Stump, H. Ravichandar, N. Roy, S. Hutchinson\",\"doi\":\"10.15607/RSS.2023.XIX.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Scheduling algorithms for real-world heterogeneous multi-robot teams must be able to reason about temporal uncertainty in the world model in order to create plans that are tolerant to the risk of unexpected delays. To this end, we present a novel sampling-based risk-aware approach for solving Heterogeneous Coalition Scheduling with Temporal Uncertainty (HCSTU) problems, which does not require any assumptions regarding the specific underlying cause of the temporal uncertainty or the specific duration distributions. Our approach computes a schedule which obeys the temporal constraints of a small number of heuristically-selected sample scenarios by solving a Mixed-Integer Linear Program, along with an upper bound on the schedule execution time. Then, it uses a hypothesis testing method, the Sequential Probability Ratio Test, to provide a probabilistic guarantee that the upper bound on the execu- tion time will be respected for a user-specified risk tolerance. With extensive experiments, we demonstrate that our approach empirically respects the risk tolerance, and generates solutions of comparable or better quality than state-of-the-art approaches while being an order of magnitude faster to compute on average. Finally, we demonstrate how robust schedules generated by our approach can be incorporated as solutions to subproblems within the broader Simultaneous Task Allocation and Planning with Spatiotemporal Constraints problem to both guide and expedite the search for solutions of higher quality and lower risk.\",\"PeriodicalId\":248720,\"journal\":{\"name\":\"Robotics: Science and Systems XIX\",\"volume\":\"3 s4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics: Science and Systems XIX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15607/RSS.2023.XIX.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XIX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2023.XIX.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

-现实世界异构多机器人团队的调度算法必须能够推理世界模型中的时间不确定性,以便创建能够容忍意外延迟风险的计划。为此,我们提出了一种新的基于抽样的风险意识方法来解决具有时间不确定性的异构联盟调度(HCSTU)问题,该方法不需要对时间不确定性的特定潜在原因或特定持续时间分布进行任何假设。我们的方法通过求解一个混合整数线性规划来计算一个服从少量启发式选择的示例场景的时间约束的调度,以及调度执行时间的上界。然后,它使用假设检验方法,即序列概率比检验,提供了一个概率保证,即执行时间的上界将符合用户指定的风险容忍度。通过广泛的实验,我们证明了我们的方法在经验上尊重风险容忍度,并产生与最先进的方法相当或更好质量的解决方案,同时平均计算速度快一个数量级。最后,我们展示了由我们的方法生成的健壮时间表如何被纳入到更广泛的具有时空约束的同步任务分配和规划问题中的子问题的解决方案中,以指导和加速寻找更高质量和更低风险的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Sampling-Based Approach for Heterogeneous Coalition Scheduling with Temporal Uncertainty
—Scheduling algorithms for real-world heterogeneous multi-robot teams must be able to reason about temporal uncertainty in the world model in order to create plans that are tolerant to the risk of unexpected delays. To this end, we present a novel sampling-based risk-aware approach for solving Heterogeneous Coalition Scheduling with Temporal Uncertainty (HCSTU) problems, which does not require any assumptions regarding the specific underlying cause of the temporal uncertainty or the specific duration distributions. Our approach computes a schedule which obeys the temporal constraints of a small number of heuristically-selected sample scenarios by solving a Mixed-Integer Linear Program, along with an upper bound on the schedule execution time. Then, it uses a hypothesis testing method, the Sequential Probability Ratio Test, to provide a probabilistic guarantee that the upper bound on the execu- tion time will be respected for a user-specified risk tolerance. With extensive experiments, we demonstrate that our approach empirically respects the risk tolerance, and generates solutions of comparable or better quality than state-of-the-art approaches while being an order of magnitude faster to compute on average. Finally, we demonstrate how robust schedules generated by our approach can be incorporated as solutions to subproblems within the broader Simultaneous Task Allocation and Planning with Spatiotemporal Constraints problem to both guide and expedite the search for solutions of higher quality and lower risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Sampling-Based Approach for Heterogeneous Coalition Scheduling with Temporal Uncertainty ROSE: Rotation-based Squeezing Robotic Gripper toward Universal Handling of Objects ERASOR2: Instance-Aware Robust 3D Mapping of the Static World in Dynamic Scenes Autonomous Navigation, Mapping and Exploration with Gaussian Processes Predefined-Time Convergent Motion Control for Heterogeneous Continuum Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1