基于马尔可夫结构的服务语义链路网络发现

Anping Zhao, Zhixing Huang, Yuhui Qiu
{"title":"基于马尔可夫结构的服务语义链路网络发现","authors":"Anping Zhao, Zhixing Huang, Yuhui Qiu","doi":"10.1109/SKG.2010.8","DOIUrl":null,"url":null,"abstract":"Service Semantic Link Network (S-SLN) is the semantic model for effectively managing Web service resources by dependency relationship among services. In this paper, we provided an effective method for automatic discovering S-SLN based on graphical structure representation of the dependencies embedded in probability model. Markov network is an undirected graph whose links represent probability dependencies. We first learned Markov network structure from Web services data, and then transformed the undirected Markov network structure into directed graph structure of S-SLN based on the joint probability distribution. Finally, experimental results show the effectiveness of the method.","PeriodicalId":105513,"journal":{"name":"2010 Sixth International Conference on Semantics, Knowledge and Grids","volume":"49 18","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Service Semantic Link Network Discovery Based on Markov Structure\",\"authors\":\"Anping Zhao, Zhixing Huang, Yuhui Qiu\",\"doi\":\"10.1109/SKG.2010.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Service Semantic Link Network (S-SLN) is the semantic model for effectively managing Web service resources by dependency relationship among services. In this paper, we provided an effective method for automatic discovering S-SLN based on graphical structure representation of the dependencies embedded in probability model. Markov network is an undirected graph whose links represent probability dependencies. We first learned Markov network structure from Web services data, and then transformed the undirected Markov network structure into directed graph structure of S-SLN based on the joint probability distribution. Finally, experimental results show the effectiveness of the method.\",\"PeriodicalId\":105513,\"journal\":{\"name\":\"2010 Sixth International Conference on Semantics, Knowledge and Grids\",\"volume\":\"49 18\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Sixth International Conference on Semantics, Knowledge and Grids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKG.2010.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth International Conference on Semantics, Knowledge and Grids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKG.2010.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

服务语义链路网络(S-SLN)是通过服务之间的依赖关系有效管理Web服务资源的语义模型。本文提出了一种基于概率模型中嵌入的依赖关系的图形结构表示的自动发现S-SLN的有效方法。马尔可夫网络是一种无向图,其链路表示概率依赖关系。首先从Web服务数据中学习马尔可夫网络结构,然后将无向马尔可夫网络结构转化为基于联合概率分布的S-SLN有向图结构。最后,通过实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Service Semantic Link Network Discovery Based on Markov Structure
Service Semantic Link Network (S-SLN) is the semantic model for effectively managing Web service resources by dependency relationship among services. In this paper, we provided an effective method for automatic discovering S-SLN based on graphical structure representation of the dependencies embedded in probability model. Markov network is an undirected graph whose links represent probability dependencies. We first learned Markov network structure from Web services data, and then transformed the undirected Markov network structure into directed graph structure of S-SLN based on the joint probability distribution. Finally, experimental results show the effectiveness of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Service Semantic Link Network Discovery Based on Markov Structure Optimization Research on Processes I/O Performance in Container-level Virtualization Research on Ontology Based Semantic Service Middleware within Spatial Information System Data Dependency Based Application Description Model in Grid and Its Usage in Scientific Computing Multi-faceted Learning Paths Recommendation Via Semantic Linked Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1