{"title":"高动态范围显示的体积渲染","authors":"A. Ghosh, Matthew Trentacoste, W. Heidrich","doi":"10.2312/VG/VG05/091-098","DOIUrl":null,"url":null,"abstract":"Dynamic range restrictions of conventional displays limit the amount of detail that can be represented in volume rendering applications. However, high dynamic range displays with contrast ratios larger than 50,000 : 1 have recently been developed. We explore how these increased capabilities can be exploited for common volume rendering algorithms such as direct volume rendering and maximum projection rendering. In particular, we discuss distribution of intensities across the range of the display contrast and a mapping of the transfer function to a perceptually linear space over the range of intensities that the display can produce. This allows us to reserve several just noticeable difference steps of intensities for spatial context apart from clearly depicting the main regions of interest. We also propose generating automatic transfer functions for order independent operators through histogram-equalization of data in perceptually linear space.","PeriodicalId":443333,"journal":{"name":"Fourth International Workshop on Volume Graphics, 2005.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Volume rendering for high dynamic range displays\",\"authors\":\"A. Ghosh, Matthew Trentacoste, W. Heidrich\",\"doi\":\"10.2312/VG/VG05/091-098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic range restrictions of conventional displays limit the amount of detail that can be represented in volume rendering applications. However, high dynamic range displays with contrast ratios larger than 50,000 : 1 have recently been developed. We explore how these increased capabilities can be exploited for common volume rendering algorithms such as direct volume rendering and maximum projection rendering. In particular, we discuss distribution of intensities across the range of the display contrast and a mapping of the transfer function to a perceptually linear space over the range of intensities that the display can produce. This allows us to reserve several just noticeable difference steps of intensities for spatial context apart from clearly depicting the main regions of interest. We also propose generating automatic transfer functions for order independent operators through histogram-equalization of data in perceptually linear space.\",\"PeriodicalId\":443333,\"journal\":{\"name\":\"Fourth International Workshop on Volume Graphics, 2005.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Workshop on Volume Graphics, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/VG/VG05/091-098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Workshop on Volume Graphics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/VG/VG05/091-098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic range restrictions of conventional displays limit the amount of detail that can be represented in volume rendering applications. However, high dynamic range displays with contrast ratios larger than 50,000 : 1 have recently been developed. We explore how these increased capabilities can be exploited for common volume rendering algorithms such as direct volume rendering and maximum projection rendering. In particular, we discuss distribution of intensities across the range of the display contrast and a mapping of the transfer function to a perceptually linear space over the range of intensities that the display can produce. This allows us to reserve several just noticeable difference steps of intensities for spatial context apart from clearly depicting the main regions of interest. We also propose generating automatic transfer functions for order independent operators through histogram-equalization of data in perceptually linear space.