多快照DOA估计的无网格稀疏方法

Zai Yang, Lihua Xie
{"title":"多快照DOA估计的无网格稀疏方法","authors":"Zai Yang, Lihua Xie","doi":"10.1109/ICASSP.2016.7472275","DOIUrl":null,"url":null,"abstract":"The authors have recently proposed two kinds of gridless sparse methods for direction of arrival (DOA) estimation that exploit joint sparsity among snapshots and completely resolve the grid mismatch issue of previous grid-based sparse methods. One is based on covariance fitting from a statistical perspective and termed as the gridless SPICE (GL-SPICE, GLS); the other uses deterministic atomic norm optimization which extends the recent super-resolution and continuous compressed sensing framework from the single to the multi-snapshot case. In this paper, we unify the two techniques by interpreting GLS as atomic norm methods in various scenarios. As a byproduct, we are able to provide theoretical guarantees of GLS for DOA estimation in the case of limited snapshots.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"On gridless sparse methods for multi-snapshot DOA estimation\",\"authors\":\"Zai Yang, Lihua Xie\",\"doi\":\"10.1109/ICASSP.2016.7472275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors have recently proposed two kinds of gridless sparse methods for direction of arrival (DOA) estimation that exploit joint sparsity among snapshots and completely resolve the grid mismatch issue of previous grid-based sparse methods. One is based on covariance fitting from a statistical perspective and termed as the gridless SPICE (GL-SPICE, GLS); the other uses deterministic atomic norm optimization which extends the recent super-resolution and continuous compressed sensing framework from the single to the multi-snapshot case. In this paper, we unify the two techniques by interpreting GLS as atomic norm methods in various scenarios. As a byproduct, we are able to provide theoretical guarantees of GLS for DOA estimation in the case of limited snapshots.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

作者最近提出了两种无网格的到达方向(DOA)估计方法,它们利用了快照之间的联合稀疏性,彻底解决了以往基于网格的稀疏方法的网格不匹配问题。一种是基于统计角度的协方差拟合,称为无网格SPICE (GL-SPICE, GLS);另一种是采用确定性原子范数优化,将当前的超分辨率连续压缩感知框架从单快照扩展到多快照。在本文中,我们通过在各种场景中将GLS解释为原子范数方法来统一这两种技术。作为一个副产品,我们能够为有限快照情况下的DOA估计提供GLS的理论保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On gridless sparse methods for multi-snapshot DOA estimation
The authors have recently proposed two kinds of gridless sparse methods for direction of arrival (DOA) estimation that exploit joint sparsity among snapshots and completely resolve the grid mismatch issue of previous grid-based sparse methods. One is based on covariance fitting from a statistical perspective and termed as the gridless SPICE (GL-SPICE, GLS); the other uses deterministic atomic norm optimization which extends the recent super-resolution and continuous compressed sensing framework from the single to the multi-snapshot case. In this paper, we unify the two techniques by interpreting GLS as atomic norm methods in various scenarios. As a byproduct, we are able to provide theoretical guarantees of GLS for DOA estimation in the case of limited snapshots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1