H. Adamu, Mat Jasri Bin Mat Jiran, Gan Keng Hoon, Nur-Hana Samsudin
{"title":"基于文本的Covid-19疫苗公众情绪:一种机器学习方法","authors":"H. Adamu, Mat Jasri Bin Mat Jiran, Gan Keng Hoon, Nur-Hana Samsudin","doi":"10.1109/IICAIET51634.2021.9573866","DOIUrl":null,"url":null,"abstract":"The global pandemic of the novel Coronavirus in 2019, known by the World Health Organisations (WHO) as Covid-19, has put various governments in a vulnerable situation around the world. For virtually every nation in the world, the effects of the Covid-19 pandemic, previously experienced by the people of China alone, has now become a matter of great concern. This research highlights its impact on the global economy, in addition to the immediate health consequences associated with the Covid-19 pandemic. The study further discussed the use of Text Analytics and Sentiment Analysis in Natural Language Processing (NLP) based on Twitter text to analyse public sentiment and derive insights regarding Covid-19 vaccines in the healthcare domain. Two machine learning algorithms were employed: Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) to classify and evaluate the results. Various pre-processing techniques were adopted to help in detecting the public sentiment based on the three sentiment polarity classes: positive, negative, and neutral. The result of the sentiment class distribution reveals that 31% of the public sentiment regarding Covid-19 vaccines is positive, 22% is negative while the remaining 47% were classified as neutral sentiment. The experimented machine learning algorithms reveals that SVM produced 88% accuracy which surpasses KNN with 78% accuracy.","PeriodicalId":234229,"journal":{"name":"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","volume":"5 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Text Analytics on Twitter Text-based Public Sentiment for Covid-19 Vaccine: A Machine Learning Approach\",\"authors\":\"H. Adamu, Mat Jasri Bin Mat Jiran, Gan Keng Hoon, Nur-Hana Samsudin\",\"doi\":\"10.1109/IICAIET51634.2021.9573866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global pandemic of the novel Coronavirus in 2019, known by the World Health Organisations (WHO) as Covid-19, has put various governments in a vulnerable situation around the world. For virtually every nation in the world, the effects of the Covid-19 pandemic, previously experienced by the people of China alone, has now become a matter of great concern. This research highlights its impact on the global economy, in addition to the immediate health consequences associated with the Covid-19 pandemic. The study further discussed the use of Text Analytics and Sentiment Analysis in Natural Language Processing (NLP) based on Twitter text to analyse public sentiment and derive insights regarding Covid-19 vaccines in the healthcare domain. Two machine learning algorithms were employed: Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) to classify and evaluate the results. Various pre-processing techniques were adopted to help in detecting the public sentiment based on the three sentiment polarity classes: positive, negative, and neutral. The result of the sentiment class distribution reveals that 31% of the public sentiment regarding Covid-19 vaccines is positive, 22% is negative while the remaining 47% were classified as neutral sentiment. The experimented machine learning algorithms reveals that SVM produced 88% accuracy which surpasses KNN with 78% accuracy.\",\"PeriodicalId\":234229,\"journal\":{\"name\":\"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"volume\":\"5 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICAIET51634.2021.9573866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICAIET51634.2021.9573866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Text Analytics on Twitter Text-based Public Sentiment for Covid-19 Vaccine: A Machine Learning Approach
The global pandemic of the novel Coronavirus in 2019, known by the World Health Organisations (WHO) as Covid-19, has put various governments in a vulnerable situation around the world. For virtually every nation in the world, the effects of the Covid-19 pandemic, previously experienced by the people of China alone, has now become a matter of great concern. This research highlights its impact on the global economy, in addition to the immediate health consequences associated with the Covid-19 pandemic. The study further discussed the use of Text Analytics and Sentiment Analysis in Natural Language Processing (NLP) based on Twitter text to analyse public sentiment and derive insights regarding Covid-19 vaccines in the healthcare domain. Two machine learning algorithms were employed: Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) to classify and evaluate the results. Various pre-processing techniques were adopted to help in detecting the public sentiment based on the three sentiment polarity classes: positive, negative, and neutral. The result of the sentiment class distribution reveals that 31% of the public sentiment regarding Covid-19 vaccines is positive, 22% is negative while the remaining 47% were classified as neutral sentiment. The experimented machine learning algorithms reveals that SVM produced 88% accuracy which surpasses KNN with 78% accuracy.