Karsten A. S. Eastman, Marcus C. Mifflin, Paul F. Oblad, Andrew G. Roberts and Vahe Bandarian*,
{"title":"一种杂交 rSAM 酶可实现多种多肽交联","authors":"Karsten A. S. Eastman, Marcus C. Mifflin, Paul F. Oblad, Andrew G. Roberts and Vahe Bandarian*, ","doi":"10.1021/acsbiomedchemau.3c00043","DOIUrl":null,"url":null,"abstract":"<p >Ribosomally produced and post-translationally modified polypeptides (RiPPs) are a diverse group of natural products that are processed by a variety of enzymes to their biologically relevant forms. PapB is a member of the radical <i>S</i>-adenosyl-<span>l</span>-methionine (rSAM) superfamily that introduces thioether cross-links between Cys and Asp residues in the PapA RiPP. We report that PapB has high tolerance for variations in the peptide substrate. Our results demonstrate that branched side chains in the thiol- and carboxylate-containing residues are processed and that lengthening of these groups to homocysteine and homoglutamate does not impair the ability of PapB to form thioether cross-links. Remarkably, the enzyme can even cross-link a peptide substrate where the native Asp carboxylate moiety is replaced with a tetrazole. We show that variations to residues embedded between the thiol- and carboxylate-containing residues are tolerated by PapB, as peptides containing both bulky (<i>e.g.</i>, Phe) and charged (<i>e.g.</i>, Lys) side chains in both natural L- and unnatural D-forms are efficiently cross-linked. Diastereomeric peptides bearing (2<i>S</i>,3<i>R</i>)- and (2<i>S</i>,3<i>S</i>)-methylaspartate are processed by PapB to form cyclic thioethers with markedly different rates, suggesting the enzymatic hydrogen atom abstraction event for the native Asp-containing substrate is diastereospecific. Finally, we synthesized two diastereomeric peptide substrates bearing <i>E-</i> and Z-configured γ,δ-dehydrohomoglutamate and show that PapB promotes addition of the deoxyadenosyl radical (dAdo•) instead of hydrogen atom abstraction. In the <i>Z</i>-configured γ,δ-dehydrohomoglutamate substrate, a fraction of the dAdo-adduct peptide is thioether cross-linked. In both cases, there is evidence for product inhibition of PapB, as the dAdo-adducts likely mimic the native transition state where dAdo• is poised to abstract a substrate hydrogen atom. Collectively, these findings provide critical insights into the arrangement of reacting species in the active site of the PapB, reveal unusual promiscuity, and highlight the potential of PapB as a tool in the development peptide therapeutics.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"3 6","pages":"480–493"},"PeriodicalIF":3.8000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00043","citationCount":"0","resultStr":"{\"title\":\"A Promiscuous rSAM Enzyme Enables Diverse Peptide Cross-linking\",\"authors\":\"Karsten A. S. Eastman, Marcus C. Mifflin, Paul F. Oblad, Andrew G. Roberts and Vahe Bandarian*, \",\"doi\":\"10.1021/acsbiomedchemau.3c00043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ribosomally produced and post-translationally modified polypeptides (RiPPs) are a diverse group of natural products that are processed by a variety of enzymes to their biologically relevant forms. PapB is a member of the radical <i>S</i>-adenosyl-<span>l</span>-methionine (rSAM) superfamily that introduces thioether cross-links between Cys and Asp residues in the PapA RiPP. We report that PapB has high tolerance for variations in the peptide substrate. Our results demonstrate that branched side chains in the thiol- and carboxylate-containing residues are processed and that lengthening of these groups to homocysteine and homoglutamate does not impair the ability of PapB to form thioether cross-links. Remarkably, the enzyme can even cross-link a peptide substrate where the native Asp carboxylate moiety is replaced with a tetrazole. We show that variations to residues embedded between the thiol- and carboxylate-containing residues are tolerated by PapB, as peptides containing both bulky (<i>e.g.</i>, Phe) and charged (<i>e.g.</i>, Lys) side chains in both natural L- and unnatural D-forms are efficiently cross-linked. Diastereomeric peptides bearing (2<i>S</i>,3<i>R</i>)- and (2<i>S</i>,3<i>S</i>)-methylaspartate are processed by PapB to form cyclic thioethers with markedly different rates, suggesting the enzymatic hydrogen atom abstraction event for the native Asp-containing substrate is diastereospecific. Finally, we synthesized two diastereomeric peptide substrates bearing <i>E-</i> and Z-configured γ,δ-dehydrohomoglutamate and show that PapB promotes addition of the deoxyadenosyl radical (dAdo•) instead of hydrogen atom abstraction. In the <i>Z</i>-configured γ,δ-dehydrohomoglutamate substrate, a fraction of the dAdo-adduct peptide is thioether cross-linked. In both cases, there is evidence for product inhibition of PapB, as the dAdo-adducts likely mimic the native transition state where dAdo• is poised to abstract a substrate hydrogen atom. Collectively, these findings provide critical insights into the arrangement of reacting species in the active site of the PapB, reveal unusual promiscuity, and highlight the potential of PapB as a tool in the development peptide therapeutics.</p>\",\"PeriodicalId\":29802,\"journal\":{\"name\":\"ACS Bio & Med Chem Au\",\"volume\":\"3 6\",\"pages\":\"480–493\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsbiomedchemau.3c00043\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Bio & Med Chem Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.3c00043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.3c00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
核糖体产生的和翻译后修饰的多肽(RiPPs)是一类多种多样的天然产物,它们被多种酶加工成与生物相关的形式。PapB 是自由基 S-腺苷-l-蛋氨酸(rSAM)超家族的成员,它在 PapA RiPP 的 Cys 和 Asp 残基之间引入硫醚交联。我们报告说,PapB 对肽底物的变化具有很高的耐受性。我们的研究结果表明,含硫醇和羧酸残基的支链侧链可被处理,而且将这些基团加长为同型半胱氨酸和同型谷氨酸不会损害 PapB 形成硫醚交联的能力。值得注意的是,该酶甚至可以交联一种肽底物,在这种底物中,原生的 Asp 羧基被四唑取代。我们的研究表明,PapB 能容忍嵌入硫醇和含羧酸残基之间的残基的变化,因为无论是天然的 L 型还是非天然的 D 型,含有笨重侧链(如 Phe)和带电侧链(如 Lys)的肽都能有效地交联。含有(2S,3R)-和(2S,3S)-天冬氨酸甲酯的非对映肽经 PapB 处理后形成环状硫醚的速度明显不同,这表明酶对原生含 Asp 的底物的氢原子抽取是非对映特异性的。最后,我们合成了两种非对映肽底物,它们分别含有 E- 和 Z- 配置的 γ,δ-脱氢高谷氨酸,结果表明 PapB 促进了脱氧腺苷基(dAdo)的添加,而不是氢原子的抽取。在 Z 配置的γ,δ-脱氢高谷氨酸底物中,一部分 dAdo 加成肽被硫醚交联。在这两种情况下,都有证据表明存在抑制 PapB 的产物,因为 dAdo 加合物很可能模拟了 dAdo 准备抽取底物氢原子的原生过渡态。总之,这些发现提供了有关 PapB 活性位点中反应物种排列的重要见解,揭示了不寻常的杂交性,并突出了 PapB 作为多肽疗法开发工具的潜力。
A Promiscuous rSAM Enzyme Enables Diverse Peptide Cross-linking
Ribosomally produced and post-translationally modified polypeptides (RiPPs) are a diverse group of natural products that are processed by a variety of enzymes to their biologically relevant forms. PapB is a member of the radical S-adenosyl-l-methionine (rSAM) superfamily that introduces thioether cross-links between Cys and Asp residues in the PapA RiPP. We report that PapB has high tolerance for variations in the peptide substrate. Our results demonstrate that branched side chains in the thiol- and carboxylate-containing residues are processed and that lengthening of these groups to homocysteine and homoglutamate does not impair the ability of PapB to form thioether cross-links. Remarkably, the enzyme can even cross-link a peptide substrate where the native Asp carboxylate moiety is replaced with a tetrazole. We show that variations to residues embedded between the thiol- and carboxylate-containing residues are tolerated by PapB, as peptides containing both bulky (e.g., Phe) and charged (e.g., Lys) side chains in both natural L- and unnatural D-forms are efficiently cross-linked. Diastereomeric peptides bearing (2S,3R)- and (2S,3S)-methylaspartate are processed by PapB to form cyclic thioethers with markedly different rates, suggesting the enzymatic hydrogen atom abstraction event for the native Asp-containing substrate is diastereospecific. Finally, we synthesized two diastereomeric peptide substrates bearing E- and Z-configured γ,δ-dehydrohomoglutamate and show that PapB promotes addition of the deoxyadenosyl radical (dAdo•) instead of hydrogen atom abstraction. In the Z-configured γ,δ-dehydrohomoglutamate substrate, a fraction of the dAdo-adduct peptide is thioether cross-linked. In both cases, there is evidence for product inhibition of PapB, as the dAdo-adducts likely mimic the native transition state where dAdo• is poised to abstract a substrate hydrogen atom. Collectively, these findings provide critical insights into the arrangement of reacting species in the active site of the PapB, reveal unusual promiscuity, and highlight the potential of PapB as a tool in the development peptide therapeutics.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.