全双工单通道系统海量MIMO收发天线建模(考虑自干扰效应)

Giashinta Larashati, R. P. Astuti, B. S. Nugroho
{"title":"全双工单通道系统海量MIMO收发天线建模(考虑自干扰效应)","authors":"Giashinta Larashati, R. P. Astuti, B. S. Nugroho","doi":"10.1109/ICSIGSYS.2017.7967021","DOIUrl":null,"url":null,"abstract":"Massive MIMO technology can increase capacity, data rate, and link reliability significantly without additional bandwidth or transmission power. Most of the previous study on Massive MIMO systems are using low frequency (2.6 GHz). This frequency is not suitable for future broadband technology, because IoT devices will use high frequency and possible cell coverage would be smaller. This work proposes Massive MIMO transceiver antenna that can be implemented in high frequency (60 GHz). This system provides broadband wireless communication which gives high capacity, high data rate and wide bandwidth. In this works the number of antennas is 64×64. Antennas can be set adaptively to capacity. In this case all of the antennas as a receiver are functioned to get redundancies and 32 antennas as transmitter adjusted to the required capacity. Configuration of antenna has been set to eliminate the mutual coupling effect. The system utilizes full duplex single channel (FDSC) which use the same frequency and time to transmit and receive data. In FDSC, bandwidth can be minimized, but self interference effect appeared and disturbing the system performance of Massive MIMO. The effect of self interference for Massive MIMO transceiver antenna simulated from 10% to 100%. The proposed system provides the channel capacity ≈ 390 bits/s/Hz or ≈ 39× spectral efficiency of SISO system. The simulation result shows that mutual coupling effect ≈ 0. The Massive MIMO have a tolerance of 20% self interference effect, however it could decrease 20% channel capacity as well.","PeriodicalId":212068,"journal":{"name":"2017 International Conference on Signals and Systems (ICSigSys)","volume":"138 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling of massive MIMO transceiver antenna for full-duplex single-channel system (in case of self interference effect)\",\"authors\":\"Giashinta Larashati, R. P. Astuti, B. S. Nugroho\",\"doi\":\"10.1109/ICSIGSYS.2017.7967021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive MIMO technology can increase capacity, data rate, and link reliability significantly without additional bandwidth or transmission power. Most of the previous study on Massive MIMO systems are using low frequency (2.6 GHz). This frequency is not suitable for future broadband technology, because IoT devices will use high frequency and possible cell coverage would be smaller. This work proposes Massive MIMO transceiver antenna that can be implemented in high frequency (60 GHz). This system provides broadband wireless communication which gives high capacity, high data rate and wide bandwidth. In this works the number of antennas is 64×64. Antennas can be set adaptively to capacity. In this case all of the antennas as a receiver are functioned to get redundancies and 32 antennas as transmitter adjusted to the required capacity. Configuration of antenna has been set to eliminate the mutual coupling effect. The system utilizes full duplex single channel (FDSC) which use the same frequency and time to transmit and receive data. In FDSC, bandwidth can be minimized, but self interference effect appeared and disturbing the system performance of Massive MIMO. The effect of self interference for Massive MIMO transceiver antenna simulated from 10% to 100%. The proposed system provides the channel capacity ≈ 390 bits/s/Hz or ≈ 39× spectral efficiency of SISO system. The simulation result shows that mutual coupling effect ≈ 0. The Massive MIMO have a tolerance of 20% self interference effect, however it could decrease 20% channel capacity as well.\",\"PeriodicalId\":212068,\"journal\":{\"name\":\"2017 International Conference on Signals and Systems (ICSigSys)\",\"volume\":\"138 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Signals and Systems (ICSigSys)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIGSYS.2017.7967021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Signals and Systems (ICSigSys)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIGSYS.2017.7967021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大规模MIMO技术可以在不增加带宽或传输功率的情况下显著提高容量、数据速率和链路可靠性。以往对大规模MIMO系统的研究大多采用低频(2.6 GHz)。这个频率不适合未来的宽带技术,因为物联网设备将使用高频,可能的蜂窝覆盖范围会更小。本研究提出了一种可在高频率(60 GHz)下实现的大规模MIMO收发天线。该系统提供高容量、高数据速率和宽带宽的宽带无线通信。在这个工程中,天线的数量是64×64。天线可根据容量自适应设置。在这种情况下,作为接收器的所有天线都具有冗余功能,并且32个天线作为发射器调整到所需的容量。设置了天线的配置以消除相互耦合效应。该系统采用全双工单通道(FDSC),使用相同的频率和时间发送和接收数据。在FDSC中,带宽可以最小化,但会出现自干扰效应,影响大规模MIMO的系统性能。对大规模MIMO收发天线的自干扰效应进行了10% ~ 100%的模拟。该系统的信道容量约为390比特/秒/赫兹,频谱效率约为SISO系统的39倍。仿真结果表明,相互耦合效应≈0。大规模MIMO具有20%的自干扰容忍度,但也可能减少20%的信道容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling of massive MIMO transceiver antenna for full-duplex single-channel system (in case of self interference effect)
Massive MIMO technology can increase capacity, data rate, and link reliability significantly without additional bandwidth or transmission power. Most of the previous study on Massive MIMO systems are using low frequency (2.6 GHz). This frequency is not suitable for future broadband technology, because IoT devices will use high frequency and possible cell coverage would be smaller. This work proposes Massive MIMO transceiver antenna that can be implemented in high frequency (60 GHz). This system provides broadband wireless communication which gives high capacity, high data rate and wide bandwidth. In this works the number of antennas is 64×64. Antennas can be set adaptively to capacity. In this case all of the antennas as a receiver are functioned to get redundancies and 32 antennas as transmitter adjusted to the required capacity. Configuration of antenna has been set to eliminate the mutual coupling effect. The system utilizes full duplex single channel (FDSC) which use the same frequency and time to transmit and receive data. In FDSC, bandwidth can be minimized, but self interference effect appeared and disturbing the system performance of Massive MIMO. The effect of self interference for Massive MIMO transceiver antenna simulated from 10% to 100%. The proposed system provides the channel capacity ≈ 390 bits/s/Hz or ≈ 39× spectral efficiency of SISO system. The simulation result shows that mutual coupling effect ≈ 0. The Massive MIMO have a tolerance of 20% self interference effect, however it could decrease 20% channel capacity as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling of massive MIMO transceiver antenna for full-duplex single-channel system (in case of self interference effect) The development of IoT LoRa: A performance evaluation on LoS and Non-LoS environment at 915 MHz ISM frequency On the design of LDPC-based Raptor codes for single carrier Internet of Things (SC-IoT) Benchmark data set for glaucoma detection with annotated cup to disc ratio Design of LDGM-based Raptor Codes for broadband Internet of Things using EXIT chart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1