基于管道的分布式加权全对最短路径

U. Agarwal, V. Ramachandran
{"title":"基于管道的分布式加权全对最短路径","authors":"U. Agarwal, V. Ramachandran","doi":"10.1109/IPDPS.2019.00014","DOIUrl":null,"url":null,"abstract":"We present new results for the distributed computation of all pairs shortest paths (APSP) in the CONGEST model in an n-node graph with moderate non-negative integer weights. Our methods can handle zero-weight edges which are known to present difficulties for distributed APSP algorithms. The current best deterministic distributed algorithm in the CONGEST model that handles zero weight edges is the Õ(n^3/2)-round algorithm of Agarwal et al. [ARKP18] that works for arbitrary edge weights. Our new deterministic algorithms run in Õ(W^1/4⋅ n^5/4) rounds in graphs with non-negative integer edge-weight at most W, and in Õ(n ⋅ Δ^1/3) rounds for shortest path distances at most Δ. These algorithms are built on top of a new pipelined algorithm we present for this problem that runs in at most 2n √Δ + 2n rounds. Additionally, we show that the techniques in our results simplify some of the procedures in the earlier APSP algorithms for non-negative edge weights in [HNS17, ARKP18]. We also present new results for computing h-hop shortest paths from k given sources, and we present an Õ(n/ε^2)-round deterministic $(1+ε) approximation algorithm for graphs with non-negative poly(n) integer weights, improving results in [Nanongkai14, LP15] that hold only for positive integer weights.","PeriodicalId":403406,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"393 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Distributed Weighted All Pairs Shortest Paths Through Pipelining\",\"authors\":\"U. Agarwal, V. Ramachandran\",\"doi\":\"10.1109/IPDPS.2019.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present new results for the distributed computation of all pairs shortest paths (APSP) in the CONGEST model in an n-node graph with moderate non-negative integer weights. Our methods can handle zero-weight edges which are known to present difficulties for distributed APSP algorithms. The current best deterministic distributed algorithm in the CONGEST model that handles zero weight edges is the Õ(n^3/2)-round algorithm of Agarwal et al. [ARKP18] that works for arbitrary edge weights. Our new deterministic algorithms run in Õ(W^1/4⋅ n^5/4) rounds in graphs with non-negative integer edge-weight at most W, and in Õ(n ⋅ Δ^1/3) rounds for shortest path distances at most Δ. These algorithms are built on top of a new pipelined algorithm we present for this problem that runs in at most 2n √Δ + 2n rounds. Additionally, we show that the techniques in our results simplify some of the procedures in the earlier APSP algorithms for non-negative edge weights in [HNS17, ARKP18]. We also present new results for computing h-hop shortest paths from k given sources, and we present an Õ(n/ε^2)-round deterministic $(1+ε) approximation algorithm for graphs with non-negative poly(n) integer weights, improving results in [Nanongkai14, LP15] that hold only for positive integer weights.\",\"PeriodicalId\":403406,\"journal\":{\"name\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"393 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2019.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2019.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文给出了中等非负整数权值n节点图中CONGEST模型中所有对最短路径(APSP)的分布式计算的新结果。我们的方法可以处理零权边,这是已知的分布式APSP算法存在的困难。目前在处理零权边的CONGEST模型中,最好的确定性分布式算法是Agarwal等人[ARKP18]的Õ(n^3/2)-round算法,它适用于任意权边。我们的新确定性算法在不超过W的非负整数边权图中运行Õ(W^1/4·n^5/4)轮,在不超过Δ的最短路径距离图中运行Õ(n·Δ^1/3)轮。这些算法是建立在一个新的流水线算法之上的,我们为这个问题提出了一个最多运行2n√Δ + 2n轮的算法。此外,我们表明,我们的结果中的技术简化了[HNS17, ARKP18]中非负边权重的早期APSP算法中的一些过程。我们还提出了从k个给定源计算h跳最短路径的新结果,并且我们提出了一个Õ(n/ε^2)-round确定性$(1+ε)近似算法,用于非负聚(n)整数权值的图,改进了[Nanongkai14, LP15]中仅适用于正整数权值的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Weighted All Pairs Shortest Paths Through Pipelining
We present new results for the distributed computation of all pairs shortest paths (APSP) in the CONGEST model in an n-node graph with moderate non-negative integer weights. Our methods can handle zero-weight edges which are known to present difficulties for distributed APSP algorithms. The current best deterministic distributed algorithm in the CONGEST model that handles zero weight edges is the Õ(n^3/2)-round algorithm of Agarwal et al. [ARKP18] that works for arbitrary edge weights. Our new deterministic algorithms run in Õ(W^1/4⋅ n^5/4) rounds in graphs with non-negative integer edge-weight at most W, and in Õ(n ⋅ Δ^1/3) rounds for shortest path distances at most Δ. These algorithms are built on top of a new pipelined algorithm we present for this problem that runs in at most 2n √Δ + 2n rounds. Additionally, we show that the techniques in our results simplify some of the procedures in the earlier APSP algorithms for non-negative edge weights in [HNS17, ARKP18]. We also present new results for computing h-hop shortest paths from k given sources, and we present an Õ(n/ε^2)-round deterministic $(1+ε) approximation algorithm for graphs with non-negative poly(n) integer weights, improving results in [Nanongkai14, LP15] that hold only for positive integer weights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed Weighted All Pairs Shortest Paths Through Pipelining SAFIRE: Scalable and Accurate Fault Injection for Parallel Multithreaded Applications Architecting Racetrack Memory Preshift through Pattern-Based Prediction Mechanisms Z-Dedup:A Case for Deduplicating Compressed Contents in Cloud Dual Pattern Compression Using Data-Preprocessing for Large-Scale GPU Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1