结合ε相似模糊规则的心电信号有效分类

M. Jezewski, R. Czabański, J. Leski, A. Matonia, R. Martínek
{"title":"结合ε相似模糊规则的心电信号有效分类","authors":"M. Jezewski, R. Czabański, J. Leski, A. Matonia, R. Martínek","doi":"10.23919/MIXDES49814.2020.9156069","DOIUrl":null,"url":null,"abstract":"CardioTocoGraphic (CTG) monitoring is the primary method of fetal condition assessment. Due to the inter- and intra-observer disagreement between experts when evaluating signals visually, a well established solution supporting the diagnostic decision is automated classification of CTG signals. The goal of this paper is to propose a method of simplifying the fuzzy classifier rule base by combining ε-similar rules, to achieve high quality of CTG signals classification, but with fewer conditional rules. The results of experiments performed using the benchmark CTG database confirm the efficiency of the introduced method.","PeriodicalId":145224,"journal":{"name":"2020 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES)","volume":"157 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combining ε-similar Fuzzy Rules for Efficient Classification of Cardiotocographic Signals\",\"authors\":\"M. Jezewski, R. Czabański, J. Leski, A. Matonia, R. Martínek\",\"doi\":\"10.23919/MIXDES49814.2020.9156069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CardioTocoGraphic (CTG) monitoring is the primary method of fetal condition assessment. Due to the inter- and intra-observer disagreement between experts when evaluating signals visually, a well established solution supporting the diagnostic decision is automated classification of CTG signals. The goal of this paper is to propose a method of simplifying the fuzzy classifier rule base by combining ε-similar rules, to achieve high quality of CTG signals classification, but with fewer conditional rules. The results of experiments performed using the benchmark CTG database confirm the efficiency of the introduced method.\",\"PeriodicalId\":145224,\"journal\":{\"name\":\"2020 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES)\",\"volume\":\"157 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MIXDES49814.2020.9156069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MIXDES49814.2020.9156069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

心动图(CTG)监测是胎儿状况评估的主要方法。由于专家在视觉评估信号时观察者之间和观察者内部的分歧,支持诊断决策的一个完善的解决方案是CTG信号的自动分类。本文的目标是提出一种结合ε-相似规则简化模糊分类器规则库的方法,以较少的条件规则实现高质量的CTG信号分类。在CTG基准数据库上进行的实验结果证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining ε-similar Fuzzy Rules for Efficient Classification of Cardiotocographic Signals
CardioTocoGraphic (CTG) monitoring is the primary method of fetal condition assessment. Due to the inter- and intra-observer disagreement between experts when evaluating signals visually, a well established solution supporting the diagnostic decision is automated classification of CTG signals. The goal of this paper is to propose a method of simplifying the fuzzy classifier rule base by combining ε-similar rules, to achieve high quality of CTG signals classification, but with fewer conditional rules. The results of experiments performed using the benchmark CTG database confirm the efficiency of the introduced method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining ε-similar Fuzzy Rules for Efficient Classification of Cardiotocographic Signals Design of Integrated Circuits and Microsystems Comparison of Set-ups Dedicated to Measure Thermal Parameters of Power LEDs Parameter Extraction for a Simplified EKV-model in a 28nm FDSOI Technology 1MHz Gate Driver in Power Technology for Fast Switching Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1