支持动态QoS的互联网流量分类需求预测

Si Thu Aung, T. Thein
{"title":"支持动态QoS的互联网流量分类需求预测","authors":"Si Thu Aung, T. Thein","doi":"10.1109/ICCCS49078.2020.9118431","DOIUrl":null,"url":null,"abstract":"Categorized Internet protocol, and demand prediction based on usage behavior can offer substantial benefits to dynamic Quality of Service (QoS) for internet service providers (ISPs). The critical requirement for dynamic QoS is to classify and predict network traffic in the next control time interval. Traffic prediction, with the aid of traffic categories can utilize the network resources more efficiently and support Dynamic QoS to function appropriately. This paper proposes an internet traffic categories demand prediction framework using machine learning techniques to support dynamic QoS. In this framework, three algorithms are implemented at transformation stage to feed into machine learning algorithms and develops efficient prediction model to predict internet network traffic demand. Experimental results show that prediction accuracy of the model is 98.97% and is efficient and suitable to support real-world network traffic prediction.","PeriodicalId":105556,"journal":{"name":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","volume":"657 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Internet Traffic Categories Demand Prediction to Support Dynamic QoS\",\"authors\":\"Si Thu Aung, T. Thein\",\"doi\":\"10.1109/ICCCS49078.2020.9118431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Categorized Internet protocol, and demand prediction based on usage behavior can offer substantial benefits to dynamic Quality of Service (QoS) for internet service providers (ISPs). The critical requirement for dynamic QoS is to classify and predict network traffic in the next control time interval. Traffic prediction, with the aid of traffic categories can utilize the network resources more efficiently and support Dynamic QoS to function appropriately. This paper proposes an internet traffic categories demand prediction framework using machine learning techniques to support dynamic QoS. In this framework, three algorithms are implemented at transformation stage to feed into machine learning algorithms and develops efficient prediction model to predict internet network traffic demand. Experimental results show that prediction accuracy of the model is 98.97% and is efficient and suitable to support real-world network traffic prediction.\",\"PeriodicalId\":105556,\"journal\":{\"name\":\"2020 5th International Conference on Computer and Communication Systems (ICCCS)\",\"volume\":\"657 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Computer and Communication Systems (ICCCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCS49078.2020.9118431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS49078.2020.9118431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分类互联网协议和基于用户行为的需求预测可以为互联网服务提供商的动态服务质量(QoS)提供实质性的好处。动态QoS的关键要求是对下一个控制时间间隔内的网络流量进行分类和预测。借助流量分类进行流量预测,可以更有效地利用网络资源,支持动态QoS的正常运行。本文提出了一种利用机器学习技术支持动态QoS的互联网流量类别需求预测框架。在该框架中,在转换阶段实现了三种算法,以馈送到机器学习算法中,并建立了有效的预测模型来预测互联网网络流量需求。实验结果表明,该模型的预测准确率为98.97%,能够有效地支持实际网络流量的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Internet Traffic Categories Demand Prediction to Support Dynamic QoS
Categorized Internet protocol, and demand prediction based on usage behavior can offer substantial benefits to dynamic Quality of Service (QoS) for internet service providers (ISPs). The critical requirement for dynamic QoS is to classify and predict network traffic in the next control time interval. Traffic prediction, with the aid of traffic categories can utilize the network resources more efficiently and support Dynamic QoS to function appropriately. This paper proposes an internet traffic categories demand prediction framework using machine learning techniques to support dynamic QoS. In this framework, three algorithms are implemented at transformation stage to feed into machine learning algorithms and develops efficient prediction model to predict internet network traffic demand. Experimental results show that prediction accuracy of the model is 98.97% and is efficient and suitable to support real-world network traffic prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Resource Dynamic Recombination and Its Technology Development of Space TT&C Equipment Automatic Arousal Detection Using Multi-model Deep Neural Network Internet Traffic Categories Demand Prediction to Support Dynamic QoS Research on Scatter Imaging Method for Electromagnetic Field Inverse Problem Based on Sparse Constraints Usage Intention of Internet of Vehicles Based on CAB Model: The Moderating Effect of Reference Groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1