极性码的神经连续对消译码

Nghia Doan, Seyyed Ali Hashemi, W. Gross
{"title":"极性码的神经连续对消译码","authors":"Nghia Doan, Seyyed Ali Hashemi, W. Gross","doi":"10.1109/SPAWC.2018.8445986","DOIUrl":null,"url":null,"abstract":"Neural network (NN) based decoders have appeared as potential candidates to replace successive cancellation (SC) based and belief propagation (BP) decoders for polar codes, due to their one-shot-decoding property. Partitioned NN (PNN) decoder has provided a solution to make use of multiple NN decoders which are connected with BP decoding, with the presence of insufficient training data for practical-length polar codes. However, PNN decoder requires BP iterations that detrimentally affect the decoding latency as compared to noniterative approaches. In this paper, we propose a neural SC (NSC) decoder to overcome the issue associated with PNN. Unlike PNN, the NSC decoder is constructed by multiple NN decoders connected with SC decoding. Compared to a PNN decoder for a polar code of length 128 and rate 0.5, the proposed NSC decoder achieves the same decoding performance, while reducing the decoding latency by 42.5%.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"96 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Neural Successive Cancellation Decoding of Polar Codes\",\"authors\":\"Nghia Doan, Seyyed Ali Hashemi, W. Gross\",\"doi\":\"10.1109/SPAWC.2018.8445986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural network (NN) based decoders have appeared as potential candidates to replace successive cancellation (SC) based and belief propagation (BP) decoders for polar codes, due to their one-shot-decoding property. Partitioned NN (PNN) decoder has provided a solution to make use of multiple NN decoders which are connected with BP decoding, with the presence of insufficient training data for practical-length polar codes. However, PNN decoder requires BP iterations that detrimentally affect the decoding latency as compared to noniterative approaches. In this paper, we propose a neural SC (NSC) decoder to overcome the issue associated with PNN. Unlike PNN, the NSC decoder is constructed by multiple NN decoders connected with SC decoding. Compared to a PNN decoder for a polar code of length 128 and rate 0.5, the proposed NSC decoder achieves the same decoding performance, while reducing the decoding latency by 42.5%.\",\"PeriodicalId\":240036,\"journal\":{\"name\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"volume\":\"96 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2018.8445986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8445986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

基于神经网络(NN)的解码器由于具有单次解码的特性,已成为取代基于连续消去(SC)和信念传播(BP)的极码解码器的潜在候选。在实际长度的极码训练数据不足的情况下,PNN解码器提供了一种利用与BP译码相连的多个NN解码器的解决方案。然而,与非迭代方法相比,PNN解码器需要BP迭代,这对解码延迟有不利影响。在本文中,我们提出了一种神经SC (NSC)解码器来克服与PNN相关的问题。与PNN不同,NSC解码器是由多个NN解码器与SC解码器连接而成。与长度为128、速率为0.5的极码的PNN解码器相比,本文提出的NSC解码器实现了相同的解码性能,同时将解码延迟降低了42.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Successive Cancellation Decoding of Polar Codes
Neural network (NN) based decoders have appeared as potential candidates to replace successive cancellation (SC) based and belief propagation (BP) decoders for polar codes, due to their one-shot-decoding property. Partitioned NN (PNN) decoder has provided a solution to make use of multiple NN decoders which are connected with BP decoding, with the presence of insufficient training data for practical-length polar codes. However, PNN decoder requires BP iterations that detrimentally affect the decoding latency as compared to noniterative approaches. In this paper, we propose a neural SC (NSC) decoder to overcome the issue associated with PNN. Unlike PNN, the NSC decoder is constructed by multiple NN decoders connected with SC decoding. Compared to a PNN decoder for a polar code of length 128 and rate 0.5, the proposed NSC decoder achieves the same decoding performance, while reducing the decoding latency by 42.5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural Successive Cancellation Decoding of Polar Codes Analysis of Some Well-Rounded Lattices in Wiretap Channels Two-Way Full-Duplex MIMO with Hybrid TX-RX MSE Minimization and Interference Cancellation Minimum Energy Resource Allocation in FOG Radio Access Network with Fronthaul and Latency Constraints A Distance and Bandwidth Dependent Adaptive Modulation Scheme for THz Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1