利用绝热逻辑优化基于FinFET的SRAM单元的功率和能量

S. Patil, V. S. K. Bhaaskaran
{"title":"利用绝热逻辑优化基于FinFET的SRAM单元的功率和能量","authors":"S. Patil, V. S. K. Bhaaskaran","doi":"10.1109/ICNETS2.2017.8067966","DOIUrl":null,"url":null,"abstract":"Background/Objective: In the recent years, the instantaneous power consumption and the total energy dissipation of a circuit have become very important factors to be considered in complex VLSI system design solutions. The adiabatic logic is a technique, which is used to optimize the power dissipation and the energy recovery capability of these circuits, and this logic makes the VLSI circuits reuse the consumed power. This paper compares different adiabatic SRAM cell structures presented in the literature. Furthermore, the conventional SRAM cell and all the related designs are implemented using FinFET devices aiming at low power operation capability. Methods/Statistical analysis: The SRAM cell design is carried out in Cadence® EDA environment and power and energy values are estimated for the CMOS processes, namely, 180nm and 32nm followed by the 32nm FinFET technology. The two different technology libraries have been employed to identify the effects of the lower technology nodal effect on the power dissipation. The layouts for these SRAM cells have been drawn using Cadence® Assura tool. Findings: The results show that the power consumption of the FinFET based adiabatic SRAM cells (8T and 9T cell structure) is less than the conventional 6T CMOS based SRAM cell. Conclusion/improvement: In this paper, the conventional SRAM cell and the adiabatic SRAM cells with different technology nodes, namely, DSM and UDSM are compared for their power and energy values. The adiabatic logic displays lower power and energy consumption compared to those incurred by the conventional 6T CMOS SRAM cell. Furthermore, the FinFET device based circuits portrays advantages with its better control over the device channel and reduced short channel effects, resulting in reduced leakage power. The FinFET based SRAM cell employing the adiabatic logic incurs the minimum power and energy dissipation.","PeriodicalId":413865,"journal":{"name":"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)","volume":"254 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Optimization of power and energy in FinFET based SRAM cell using adiabatic logic\",\"authors\":\"S. Patil, V. S. K. Bhaaskaran\",\"doi\":\"10.1109/ICNETS2.2017.8067966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background/Objective: In the recent years, the instantaneous power consumption and the total energy dissipation of a circuit have become very important factors to be considered in complex VLSI system design solutions. The adiabatic logic is a technique, which is used to optimize the power dissipation and the energy recovery capability of these circuits, and this logic makes the VLSI circuits reuse the consumed power. This paper compares different adiabatic SRAM cell structures presented in the literature. Furthermore, the conventional SRAM cell and all the related designs are implemented using FinFET devices aiming at low power operation capability. Methods/Statistical analysis: The SRAM cell design is carried out in Cadence® EDA environment and power and energy values are estimated for the CMOS processes, namely, 180nm and 32nm followed by the 32nm FinFET technology. The two different technology libraries have been employed to identify the effects of the lower technology nodal effect on the power dissipation. The layouts for these SRAM cells have been drawn using Cadence® Assura tool. Findings: The results show that the power consumption of the FinFET based adiabatic SRAM cells (8T and 9T cell structure) is less than the conventional 6T CMOS based SRAM cell. Conclusion/improvement: In this paper, the conventional SRAM cell and the adiabatic SRAM cells with different technology nodes, namely, DSM and UDSM are compared for their power and energy values. The adiabatic logic displays lower power and energy consumption compared to those incurred by the conventional 6T CMOS SRAM cell. Furthermore, the FinFET device based circuits portrays advantages with its better control over the device channel and reduced short channel effects, resulting in reduced leakage power. The FinFET based SRAM cell employing the adiabatic logic incurs the minimum power and energy dissipation.\",\"PeriodicalId\":413865,\"journal\":{\"name\":\"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)\",\"volume\":\"254 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNETS2.2017.8067966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNETS2.2017.8067966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

背景/目的:近年来,电路的瞬时功耗和总能耗已成为复杂VLSI系统设计方案中需要考虑的重要因素。绝热逻辑是一种优化电路功耗和能量回收能力的技术,这种逻辑使VLSI电路复用所消耗的功率。本文比较了文献中不同的绝热SRAM单元结构。此外,传统的SRAM单元和所有相关设计都是使用FinFET器件实现的,旨在实现低功耗工作能力。方法/统计分析:SRAM单元设计在Cadence®EDA环境中进行,并对CMOS工艺(即180nm和32nm)的功率和能量值进行估算,然后采用32nm FinFET技术。采用两种不同的技术库来确定低技术节点效应对功耗的影响。这些SRAM单元的布局是使用Cadence®Assura工具绘制的。结果表明:基于FinFET的绝热SRAM电池(8T和9T电池结构)的功耗低于传统的基于6T CMOS的SRAM电池。结论/改进:本文比较了传统SRAM电池和具有不同技术节点(DSM和UDSM)的绝热SRAM电池的功率和能量值。与传统的6T CMOS SRAM单元相比,绝热逻辑显示出更低的功耗和能耗。此外,基于FinFET器件的电路具有更好地控制器件通道和减少短通道效应的优势,从而降低泄漏功率。采用绝热逻辑的基于FinFET的SRAM单元具有最小的功耗和能量消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of power and energy in FinFET based SRAM cell using adiabatic logic
Background/Objective: In the recent years, the instantaneous power consumption and the total energy dissipation of a circuit have become very important factors to be considered in complex VLSI system design solutions. The adiabatic logic is a technique, which is used to optimize the power dissipation and the energy recovery capability of these circuits, and this logic makes the VLSI circuits reuse the consumed power. This paper compares different adiabatic SRAM cell structures presented in the literature. Furthermore, the conventional SRAM cell and all the related designs are implemented using FinFET devices aiming at low power operation capability. Methods/Statistical analysis: The SRAM cell design is carried out in Cadence® EDA environment and power and energy values are estimated for the CMOS processes, namely, 180nm and 32nm followed by the 32nm FinFET technology. The two different technology libraries have been employed to identify the effects of the lower technology nodal effect on the power dissipation. The layouts for these SRAM cells have been drawn using Cadence® Assura tool. Findings: The results show that the power consumption of the FinFET based adiabatic SRAM cells (8T and 9T cell structure) is less than the conventional 6T CMOS based SRAM cell. Conclusion/improvement: In this paper, the conventional SRAM cell and the adiabatic SRAM cells with different technology nodes, namely, DSM and UDSM are compared for their power and energy values. The adiabatic logic displays lower power and energy consumption compared to those incurred by the conventional 6T CMOS SRAM cell. Furthermore, the FinFET device based circuits portrays advantages with its better control over the device channel and reduced short channel effects, resulting in reduced leakage power. The FinFET based SRAM cell employing the adiabatic logic incurs the minimum power and energy dissipation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Security protocols for Internet of Things: A survey Secure identity management in mobile cloud computing Vehicle license plate detection and recognition using non-blind image de-blurring algorithm A connectivity protocol for star topology using wireless sensor network Enhancing the efficiency of carry skip adder using MBFA-10T
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1