结合分类器和用户反馈消除作者姓名歧义

Emília A. de Souza, Anderson A. Ferreira, Marcos André Gonçalves
{"title":"结合分类器和用户反馈消除作者姓名歧义","authors":"Emília A. de Souza, Anderson A. Ferreira, Marcos André Gonçalves","doi":"10.1145/2756406.2756964","DOIUrl":null,"url":null,"abstract":"Historically, supervised methods have been the most effective ones for author name disambiguation tasks. In here, we propose a specific manner to combine supervised techniques along with user feedback. Although, we use supervised techniques, the only user effort is to provide feedback on results since initial training data is automatically generated. Our experiments show gains up to 20% in the disambiguation performance against representative baselines.","PeriodicalId":256118,"journal":{"name":"Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries","volume":"188 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Combining Classifiers and User Feedback for Disambiguating Author Names\",\"authors\":\"Emília A. de Souza, Anderson A. Ferreira, Marcos André Gonçalves\",\"doi\":\"10.1145/2756406.2756964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Historically, supervised methods have been the most effective ones for author name disambiguation tasks. In here, we propose a specific manner to combine supervised techniques along with user feedback. Although, we use supervised techniques, the only user effort is to provide feedback on results since initial training data is automatically generated. Our experiments show gains up to 20% in the disambiguation performance against representative baselines.\",\"PeriodicalId\":256118,\"journal\":{\"name\":\"Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries\",\"volume\":\"188 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2756406.2756964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM/IEEE-CS Joint Conference on Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2756406.2756964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从历史上看,监督方法是作者姓名消歧任务中最有效的方法。在这里,我们提出了一种结合监督技术和用户反馈的具体方式。尽管我们使用了监督技术,但由于初始训练数据是自动生成的,因此用户唯一的工作就是提供对结果的反馈。我们的实验表明,针对代表性基线的消歧性能提高了20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining Classifiers and User Feedback for Disambiguating Author Names
Historically, supervised methods have been the most effective ones for author name disambiguation tasks. In here, we propose a specific manner to combine supervised techniques along with user feedback. Although, we use supervised techniques, the only user effort is to provide feedback on results since initial training data is automatically generated. Our experiments show gains up to 20% in the disambiguation performance against representative baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Classifiers and User Feedback for Disambiguating Author Names Improving Access to Large-scale Digital Libraries ThroughSemantic-enhanced Search and Disambiguation ConfAssist: A Conflict Resolution Framework for Assisting the Categorization of Computer Science Conferences The HathiTrust Research Center: Providing analytic access to the HathiTrust Digital Library's 4.7 billion pages Scholarly Document Information Extraction using Extensible Features for Efficient Higher Order Semi-CRFs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1