海洋声音的敏捷边缘分类

Stelios N. Neophytou, Pavlos Tsiantis, Ilias Alexopoulos, I. Kyriakides, Camille de Veyrac, Ehson Abdi, D. Hayes
{"title":"海洋声音的敏捷边缘分类","authors":"Stelios N. Neophytou, Pavlos Tsiantis, Ilias Alexopoulos, I. Kyriakides, Camille de Veyrac, Ehson Abdi, D. Hayes","doi":"10.1109/UEMCON51285.2020.9298142","DOIUrl":null,"url":null,"abstract":"The maritime environment is characterized by a scarcity of resources of power, sensing, processing, and communications. The resource constraints impose limitations in information acquisition which involves data collection and data processing to yield meaningful statistics. The contribution of this work is on custom software and hardware methods for low power, low data-rate processing for the application of classification of ocean sounds. The combination of light processing software and custom hardware allow the development of efficient cyber-physical maritime IoT systems. A simulation-based study is provided to evaluate the ability of the software method for agile learning of features for ocean sounds classification. In addition, a practical implementation on a custom hardware emulator is provided to demonstrate the potential of the method to classify ocean sounds on low power, inexpensive seaborne IoT nodes.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"126 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Agile Edge Classification of Ocean Sounds\",\"authors\":\"Stelios N. Neophytou, Pavlos Tsiantis, Ilias Alexopoulos, I. Kyriakides, Camille de Veyrac, Ehson Abdi, D. Hayes\",\"doi\":\"10.1109/UEMCON51285.2020.9298142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The maritime environment is characterized by a scarcity of resources of power, sensing, processing, and communications. The resource constraints impose limitations in information acquisition which involves data collection and data processing to yield meaningful statistics. The contribution of this work is on custom software and hardware methods for low power, low data-rate processing for the application of classification of ocean sounds. The combination of light processing software and custom hardware allow the development of efficient cyber-physical maritime IoT systems. A simulation-based study is provided to evaluate the ability of the software method for agile learning of features for ocean sounds classification. In addition, a practical implementation on a custom hardware emulator is provided to demonstrate the potential of the method to classify ocean sounds on low power, inexpensive seaborne IoT nodes.\",\"PeriodicalId\":433609,\"journal\":{\"name\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"126 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON51285.2020.9298142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

海洋环境的特点是缺乏电力、传感、处理和通信资源。资源限制限制了信息获取,包括数据收集和数据处理,以产生有意义的统计数据。这项工作的贡献在于为海洋声音分类应用提供低功耗、低数据速率处理的定制软件和硬件方法。光处理软件和定制硬件的结合允许开发高效的网络物理海事物联网系统。通过仿真研究,对软件方法在海洋声音分类特征敏捷学习中的能力进行了评价。此外,还提供了在定制硬件模拟器上的实际实现,以展示该方法在低功耗,廉价的海上物联网节点上对海洋声音进行分类的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Agile Edge Classification of Ocean Sounds
The maritime environment is characterized by a scarcity of resources of power, sensing, processing, and communications. The resource constraints impose limitations in information acquisition which involves data collection and data processing to yield meaningful statistics. The contribution of this work is on custom software and hardware methods for low power, low data-rate processing for the application of classification of ocean sounds. The combination of light processing software and custom hardware allow the development of efficient cyber-physical maritime IoT systems. A simulation-based study is provided to evaluate the ability of the software method for agile learning of features for ocean sounds classification. In addition, a practical implementation on a custom hardware emulator is provided to demonstrate the potential of the method to classify ocean sounds on low power, inexpensive seaborne IoT nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agile Edge Classification of Ocean Sounds EMG-based Hand Gesture Recognition by Deep Time-frequency Learning for Assisted Living & Rehabilitation A High Security Signature Algorithm Based on Kerberos for REST-style Cloud Storage Service A Comparison of Blockchain-Based Wireless Sensor Network Protocols Computer Vision based License Plate Detection for Automated Vehicle Parking Management System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1