Young-Il Song, Kyedong Jung, S. Lee, Jong-Yong Lee
{"title":"应用模糊推理系统研究青少年簇首选择","authors":"Young-Il Song, Kyedong Jung, S. Lee, Jong-Yong Lee","doi":"10.7236/IJASC.2016.5.1.66","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed the clustering algorithm using fuzzy inference system for improving adaptability the cluster head selection of TEEN. The stochastic selection method cannot guarantee available of cluster head. Furthermore, because the formation of clusters is not optimized, the network lifetime is impeded. To improve this problem, we propose the algorithm that gathers attributes of sensor node to evaluate probability to be cluster head","PeriodicalId":297506,"journal":{"name":"The International Journal of Advanced Smart Convergence","volume":"66 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Study of Cluster Head Election of TEEN applying the Fuzzy Inference System\",\"authors\":\"Young-Il Song, Kyedong Jung, S. Lee, Jong-Yong Lee\",\"doi\":\"10.7236/IJASC.2016.5.1.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed the clustering algorithm using fuzzy inference system for improving adaptability the cluster head selection of TEEN. The stochastic selection method cannot guarantee available of cluster head. Furthermore, because the formation of clusters is not optimized, the network lifetime is impeded. To improve this problem, we propose the algorithm that gathers attributes of sensor node to evaluate probability to be cluster head\",\"PeriodicalId\":297506,\"journal\":{\"name\":\"The International Journal of Advanced Smart Convergence\",\"volume\":\"66 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Journal of Advanced Smart Convergence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7236/IJASC.2016.5.1.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Advanced Smart Convergence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7236/IJASC.2016.5.1.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Study of Cluster Head Election of TEEN applying the Fuzzy Inference System
In this paper, we proposed the clustering algorithm using fuzzy inference system for improving adaptability the cluster head selection of TEEN. The stochastic selection method cannot guarantee available of cluster head. Furthermore, because the formation of clusters is not optimized, the network lifetime is impeded. To improve this problem, we propose the algorithm that gathers attributes of sensor node to evaluate probability to be cluster head