语音识别通过语音特征音节

Simon King, T. A. Stephenson, S. Isard, P. Taylor, Alex Strachan
{"title":"语音识别通过语音特征音节","authors":"Simon King, T. A. Stephenson, S. Isard, P. Taylor, Alex Strachan","doi":"10.21437/ICSLP.1998-531","DOIUrl":null,"url":null,"abstract":"Speech can be naturally described by phonetic features, such as a set of acoustic phonetic features or a set of articulatory features. This thesis establi shes the effectiveness of using phonetic features in phoneme recognition by comparing a recogniser based on them to a recogniser using an established parametrisation as a baseline. The usefulness of phonetic features serves as the foundation for the subsequent modelling of syllables. Syllables are subject to fewer of the context-sensitivity effects that hamper phone-based speech recognition. I investigate the different questions involved in creating syllable models. After training a feature-based syllable recogniser, I compare the feature based syllables against a baseline. To conclude, the feature based syllable models are compared against the baseline phoneme models in word recognition. With the resultant feature-syllable models performing well in word recognition, the featuresyllables show their future potential for large vocabulary automatic speech recognition.","PeriodicalId":117113,"journal":{"name":"5th International Conference on Spoken Language Processing (ICSLP 1998)","volume":"52 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Speech recognition via phonetically featured syllables\",\"authors\":\"Simon King, T. A. Stephenson, S. Isard, P. Taylor, Alex Strachan\",\"doi\":\"10.21437/ICSLP.1998-531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech can be naturally described by phonetic features, such as a set of acoustic phonetic features or a set of articulatory features. This thesis establi shes the effectiveness of using phonetic features in phoneme recognition by comparing a recogniser based on them to a recogniser using an established parametrisation as a baseline. The usefulness of phonetic features serves as the foundation for the subsequent modelling of syllables. Syllables are subject to fewer of the context-sensitivity effects that hamper phone-based speech recognition. I investigate the different questions involved in creating syllable models. After training a feature-based syllable recogniser, I compare the feature based syllables against a baseline. To conclude, the feature based syllable models are compared against the baseline phoneme models in word recognition. With the resultant feature-syllable models performing well in word recognition, the featuresyllables show their future potential for large vocabulary automatic speech recognition.\",\"PeriodicalId\":117113,\"journal\":{\"name\":\"5th International Conference on Spoken Language Processing (ICSLP 1998)\",\"volume\":\"52 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Spoken Language Processing (ICSLP 1998)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/ICSLP.1998-531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Spoken Language Processing (ICSLP 1998)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ICSLP.1998-531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

语音可以自然地用语音特征来描述,如一组声学语音特征或一组发音特征。本文通过将基于语音特征的识别器与使用已建立的参数化作为基线的识别器进行比较,确定了在音素识别中使用语音特征的有效性。语音特征的有用性是后续音节建模的基础。音节受到较少的上下文敏感性影响,而上下文敏感性影响阻碍了基于电话的语音识别。我研究了创建音节模型所涉及的不同问题。在训练了一个基于特征的音节识别器之后,我将基于特征的音节与基线进行比较。最后,将基于特征的音节模型与基线音素模型在单词识别中的应用进行了比较。所得到的特征音节模型在单词识别中表现良好,表明了特征音节在大词汇量自动语音识别中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speech recognition via phonetically featured syllables
Speech can be naturally described by phonetic features, such as a set of acoustic phonetic features or a set of articulatory features. This thesis establi shes the effectiveness of using phonetic features in phoneme recognition by comparing a recogniser based on them to a recogniser using an established parametrisation as a baseline. The usefulness of phonetic features serves as the foundation for the subsequent modelling of syllables. Syllables are subject to fewer of the context-sensitivity effects that hamper phone-based speech recognition. I investigate the different questions involved in creating syllable models. After training a feature-based syllable recogniser, I compare the feature based syllables against a baseline. To conclude, the feature based syllable models are compared against the baseline phoneme models in word recognition. With the resultant feature-syllable models performing well in word recognition, the featuresyllables show their future potential for large vocabulary automatic speech recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assimilation of place in Japanese and dutch Articulatory analysis using a codebook for articulatory based low bit-rate speech coding Phonetic and phonological characteristics of paralinguistic information in spoken Japanese HMM-based visual speech recognition using intensity and location normalization Speech recognition via phonetically featured syllables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1