基于视觉中心移位的视觉显著性检测

Jinge Hu, Jiang Xiong, Yuming Feng, B. Onasanya
{"title":"基于视觉中心移位的视觉显著性检测","authors":"Jinge Hu, Jiang Xiong, Yuming Feng, B. Onasanya","doi":"10.1109/ICACI52617.2021.9435891","DOIUrl":null,"url":null,"abstract":"The saliency areas extracted by traditional visual saliency detection methods are not clear enough. This paper presents a visual saliency detection method based on visual center offset. On the basis of pre-segmentation of the image, the significant areas of the image are extracted by combining the color contrast, color distribution and location characteristics. Using visual center transfer to simulate the visual transfer process of human observation, the image is analyzed at multiple scales. The results indicate that this approach is efficient because ROC curve and Precision-Recall performed well.","PeriodicalId":382483,"journal":{"name":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual saliency detection based on visual center shift\",\"authors\":\"Jinge Hu, Jiang Xiong, Yuming Feng, B. Onasanya\",\"doi\":\"10.1109/ICACI52617.2021.9435891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The saliency areas extracted by traditional visual saliency detection methods are not clear enough. This paper presents a visual saliency detection method based on visual center offset. On the basis of pre-segmentation of the image, the significant areas of the image are extracted by combining the color contrast, color distribution and location characteristics. Using visual center transfer to simulate the visual transfer process of human observation, the image is analyzed at multiple scales. The results indicate that this approach is efficient because ROC curve and Precision-Recall performed well.\",\"PeriodicalId\":382483,\"journal\":{\"name\":\"2021 13th International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI52617.2021.9435891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI52617.2021.9435891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的视觉显著性检测方法提取的显著区域不够清晰。提出了一种基于视觉中心偏移量的视觉显著性检测方法。在对图像进行预分割的基础上,结合颜色对比、颜色分布和位置特征提取图像的重要区域。利用视觉中心传递模拟人类观察的视觉传递过程,对图像进行多尺度分析。结果表明,该方法具有良好的ROC曲线和查准率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual saliency detection based on visual center shift
The saliency areas extracted by traditional visual saliency detection methods are not clear enough. This paper presents a visual saliency detection method based on visual center offset. On the basis of pre-segmentation of the image, the significant areas of the image are extracted by combining the color contrast, color distribution and location characteristics. Using visual center transfer to simulate the visual transfer process of human observation, the image is analyzed at multiple scales. The results indicate that this approach is efficient because ROC curve and Precision-Recall performed well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual saliency detection based on visual center shift MMTrans-MT: A Framework for Multimodal Emotion Recognition Using Multitask Learning K-means Clustering Based on Improved Quantum Particle Swarm Optimization Algorithm Performance of different Electric vehicle Battery packs at low temperature and Analysis of Intelligent SOC experiment Service Quality Loss-aware Privacy Protection Mechanism in Edge-Cloud IoTs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1