利用有限字母属性的多径SISO信道环境中半盲符号估计的迭代过程

O. Rousseaux, G. Leus, M. Moonen
{"title":"利用有限字母属性的多径SISO信道环境中半盲符号估计的迭代过程","authors":"O. Rousseaux, G. Leus, M. Moonen","doi":"10.1109/IZSBC.2002.991761","DOIUrl":null,"url":null,"abstract":"In this paper, we present a maximum likelihood (ML) symbol detector for single-carrier block transmissions in the context of SISO channels with multipath. This ML detector is based on an iterative least squares with projection (ILSP) algorithm exploiting both finite alphabet properties of the transmitted signal and its cyclic prefixed structure in order to approach ML detection in a cheap way. Since the initial channel estimate is crucial for the convergence of the ILSP algorithm, we propose a computationally cheap stochastic method for computing an initial channel estimate using a variant of cyclic prefix only (CP-Only): the known symbol padding only (KSP-Only) technique. The resulting channel model is sufficiently accurate to be used as a starting point for the iterations. The final result is a computationally affordable direct symbol estimation method that yields promising results in terms of bit error rate (BER).","PeriodicalId":336991,"journal":{"name":"2002 International Zurich Seminar on Broadband Communications Access - Transmission - Networking (Cat. No.02TH8599)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An iterative procedure for semi-blind symbol estimation in a multipath SISO channel context exploiting finite alphabet properties\",\"authors\":\"O. Rousseaux, G. Leus, M. Moonen\",\"doi\":\"10.1109/IZSBC.2002.991761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a maximum likelihood (ML) symbol detector for single-carrier block transmissions in the context of SISO channels with multipath. This ML detector is based on an iterative least squares with projection (ILSP) algorithm exploiting both finite alphabet properties of the transmitted signal and its cyclic prefixed structure in order to approach ML detection in a cheap way. Since the initial channel estimate is crucial for the convergence of the ILSP algorithm, we propose a computationally cheap stochastic method for computing an initial channel estimate using a variant of cyclic prefix only (CP-Only): the known symbol padding only (KSP-Only) technique. The resulting channel model is sufficiently accurate to be used as a starting point for the iterations. The final result is a computationally affordable direct symbol estimation method that yields promising results in terms of bit error rate (BER).\",\"PeriodicalId\":336991,\"journal\":{\"name\":\"2002 International Zurich Seminar on Broadband Communications Access - Transmission - Networking (Cat. No.02TH8599)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 International Zurich Seminar on Broadband Communications Access - Transmission - Networking (Cat. No.02TH8599)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IZSBC.2002.991761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 International Zurich Seminar on Broadband Communications Access - Transmission - Networking (Cat. No.02TH8599)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IZSBC.2002.991761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种最大似然符号检测器,用于多径SISO信道下的单载波块传输。该机器学习检测器基于迭代投影最小二乘(ILSP)算法,利用传输信号的有限字母表性质及其循环前缀结构,以一种廉价的方式接近机器学习检测。由于初始信道估计对于ILSP算法的收敛至关重要,我们提出了一种计算成本低廉的随机方法,用于使用循环前缀仅(CP-Only)的一种变体:已知符号填充仅(kp - only)技术来计算初始信道估计。得到的通道模型足够精确,可以用作迭代的起点。最终的结果是一种计算负担得起的直接符号估计方法,在误码率(BER)方面产生了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An iterative procedure for semi-blind symbol estimation in a multipath SISO channel context exploiting finite alphabet properties
In this paper, we present a maximum likelihood (ML) symbol detector for single-carrier block transmissions in the context of SISO channels with multipath. This ML detector is based on an iterative least squares with projection (ILSP) algorithm exploiting both finite alphabet properties of the transmitted signal and its cyclic prefixed structure in order to approach ML detection in a cheap way. Since the initial channel estimate is crucial for the convergence of the ILSP algorithm, we propose a computationally cheap stochastic method for computing an initial channel estimate using a variant of cyclic prefix only (CP-Only): the known symbol padding only (KSP-Only) technique. The resulting channel model is sufficiently accurate to be used as a starting point for the iterations. The final result is a computationally affordable direct symbol estimation method that yields promising results in terms of bit error rate (BER).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An iterative procedure for semi-blind symbol estimation in a multipath SISO channel context exploiting finite alphabet properties Multistage DS-CDMA receivers with pathwise interference mitigation Weight convergence analysis of adaptive array antennas based on SMI algorithm Analysis on coverage and capacity in adoption of repeater systems in CDMA2000 Transmit antenna diversity for OFDM-based W-LANs with a priori channel state information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1