BlueFi:从蓝牙到WiFi的物理层跨技术通信

Zhijun Li, Yongrui Chen
{"title":"BlueFi:从蓝牙到WiFi的物理层跨技术通信","authors":"Zhijun Li, Yongrui Chen","doi":"10.1109/ICDCS47774.2020.00067","DOIUrl":null,"url":null,"abstract":"Today’s wireless networks have become increasingly heterogenous, mobile and dense. To satisfy the rising demands of ubiquitous connections, billions of multi-radio gateways have to be deployed, inevitably incurring high deployment cost and extra traffic overhead. Recent advances on Cross-Technology Communication (CTC) have shown its ability to avoid these drawbacks. However, the state-of-the-art CTCs from Bluetooth to WiFi, two of the most popular wireless techniques, still suffer from low data-rate (e.g., 3.1Kbps), which severely restricts their applicability. We present BlueFi, the first physical-layer CTC (PHY-CTC) from Bluetooth Low Energy (BLE) to WiFi, which enables high throughput, bidirectional and parallel transmissions between BLE and WiFi via spectral analysis. The key observation is that commodity WiFi chipsets can operate in the spectral analysis mode, in which WiFi can recognize specific BLE signal waveforms in frequency domain at symbol-level granularity. Leveraging this feature, we manufacture desired waveforms by choosing frame payload at BLE side, and observe spectral patterns at WiFi side. To achieve bidirectional links, we design a PHY-CTC method from WiFi to BLE based on signal emulation. We implement our prototype on USRP (with 802.11g PHY) and commodity BLE devices. Extensive evaluations show that BlueFi can achieve 120Kbps per link from BLE to WiFi with more than 95% frame reception ratio, over 38x faster than state-of-the-art CTCs. Moreover, BlueFi can support 9 wireless links in parallel, leading to the total throughput over 1Mbps.","PeriodicalId":158630,"journal":{"name":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","volume":"85 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"BlueFi: Physical-layer Cross-Technology Communication from Bluetooth to WiFi\",\"authors\":\"Zhijun Li, Yongrui Chen\",\"doi\":\"10.1109/ICDCS47774.2020.00067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today’s wireless networks have become increasingly heterogenous, mobile and dense. To satisfy the rising demands of ubiquitous connections, billions of multi-radio gateways have to be deployed, inevitably incurring high deployment cost and extra traffic overhead. Recent advances on Cross-Technology Communication (CTC) have shown its ability to avoid these drawbacks. However, the state-of-the-art CTCs from Bluetooth to WiFi, two of the most popular wireless techniques, still suffer from low data-rate (e.g., 3.1Kbps), which severely restricts their applicability. We present BlueFi, the first physical-layer CTC (PHY-CTC) from Bluetooth Low Energy (BLE) to WiFi, which enables high throughput, bidirectional and parallel transmissions between BLE and WiFi via spectral analysis. The key observation is that commodity WiFi chipsets can operate in the spectral analysis mode, in which WiFi can recognize specific BLE signal waveforms in frequency domain at symbol-level granularity. Leveraging this feature, we manufacture desired waveforms by choosing frame payload at BLE side, and observe spectral patterns at WiFi side. To achieve bidirectional links, we design a PHY-CTC method from WiFi to BLE based on signal emulation. We implement our prototype on USRP (with 802.11g PHY) and commodity BLE devices. Extensive evaluations show that BlueFi can achieve 120Kbps per link from BLE to WiFi with more than 95% frame reception ratio, over 38x faster than state-of-the-art CTCs. Moreover, BlueFi can support 9 wireless links in parallel, leading to the total throughput over 1Mbps.\",\"PeriodicalId\":158630,\"journal\":{\"name\":\"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"85 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS47774.2020.00067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS47774.2020.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

今天的无线网络已经变得越来越异构、移动和密集。为了满足日益增长的无处不在的连接需求,必须部署数十亿个多无线网关,这不可避免地会产生高昂的部署成本和额外的流量开销。跨技术通信(CTC)的最新进展表明它能够避免这些缺点。然而,从蓝牙到WiFi这两种最流行的无线技术,最先进的ctc仍然存在低数据速率(例如,3.1Kbps)的问题,这严重限制了它们的适用性。我们提出了从蓝牙低功耗(BLE)到WiFi的第一个物理层CTC (PHY-CTC) BlueFi,它通过频谱分析实现了BLE和WiFi之间的高吞吐量、双向和并行传输。关键的观察是,商品WiFi芯片组可以在频谱分析模式下工作,在频谱分析模式下,WiFi可以在频域以符号级粒度识别特定的BLE信号波形。利用这一特性,我们通过在BLE侧选择帧负载来制造所需的波形,并在WiFi侧观察频谱模式。为了实现双向链路,我们基于信号仿真设计了从WiFi到BLE的PHY-CTC方法。我们在USRP (802.11g PHY)和商用BLE设备上实现我们的原型。广泛的评估表明,BlueFi可以实现从BLE到WiFi的每条链路120Kbps,帧接收比超过95%,比最先进的ctc快38倍以上。此外,BlueFi可以支持9个无线链路并行,导致总吞吐量超过1Mbps。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BlueFi: Physical-layer Cross-Technology Communication from Bluetooth to WiFi
Today’s wireless networks have become increasingly heterogenous, mobile and dense. To satisfy the rising demands of ubiquitous connections, billions of multi-radio gateways have to be deployed, inevitably incurring high deployment cost and extra traffic overhead. Recent advances on Cross-Technology Communication (CTC) have shown its ability to avoid these drawbacks. However, the state-of-the-art CTCs from Bluetooth to WiFi, two of the most popular wireless techniques, still suffer from low data-rate (e.g., 3.1Kbps), which severely restricts their applicability. We present BlueFi, the first physical-layer CTC (PHY-CTC) from Bluetooth Low Energy (BLE) to WiFi, which enables high throughput, bidirectional and parallel transmissions between BLE and WiFi via spectral analysis. The key observation is that commodity WiFi chipsets can operate in the spectral analysis mode, in which WiFi can recognize specific BLE signal waveforms in frequency domain at symbol-level granularity. Leveraging this feature, we manufacture desired waveforms by choosing frame payload at BLE side, and observe spectral patterns at WiFi side. To achieve bidirectional links, we design a PHY-CTC method from WiFi to BLE based on signal emulation. We implement our prototype on USRP (with 802.11g PHY) and commodity BLE devices. Extensive evaluations show that BlueFi can achieve 120Kbps per link from BLE to WiFi with more than 95% frame reception ratio, over 38x faster than state-of-the-art CTCs. Moreover, BlueFi can support 9 wireless links in parallel, leading to the total throughput over 1Mbps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Energy-Efficient Edge Offloading Scheme for UAV-Assisted Internet of Things Kill Two Birds with One Stone: Auto-tuning RocksDB for High Bandwidth and Low Latency BlueFi: Physical-layer Cross-Technology Communication from Bluetooth to WiFi [Title page i] Distributionally Robust Edge Learning with Dirichlet Process Prior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1