片上信号通信的热感知光电路由协同设计

Yu-Sheng Lu, Kuan-Cheng Chen, Yu-Ling Hsu, Yao-Wen Chang
{"title":"片上信号通信的热感知光电路由协同设计","authors":"Yu-Sheng Lu, Kuan-Cheng Chen, Yu-Ling Hsu, Yao-Wen Chang","doi":"10.1145/3489517.3530404","DOIUrl":null,"url":null,"abstract":"The optical interconnection is a promising solution for on-chip signal communication in modern system-on-chip (SoC) and heterogeneous integration designs, providing large bandwidth and high-speed transmission with low power consumption. Previous works do not handle two main issues for on-chip optical-electrical (O-E) co-design: the thermal impact during O-E routing and the trade-offs among power consumption, wirelength, and congestion. As a result, the thermal-induced band shift might incur transmission malfunction; the power consumption estimation is inaccurate; thus, only suboptimal results are obtained. To remedy these disadvantages, we present a thermal-aware optical-electrical routing co-design flow to minimize power consumption, thermal impact, and wirelength. Experimental results based on the ISPD 2019 contest benchmarks show that our co-design flow significantly outperforms state-of-the-art works in power consumption, thermal impact, and wire-length.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"50 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermal-aware optical-electrical routing codesign for on-chip signal communications\",\"authors\":\"Yu-Sheng Lu, Kuan-Cheng Chen, Yu-Ling Hsu, Yao-Wen Chang\",\"doi\":\"10.1145/3489517.3530404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optical interconnection is a promising solution for on-chip signal communication in modern system-on-chip (SoC) and heterogeneous integration designs, providing large bandwidth and high-speed transmission with low power consumption. Previous works do not handle two main issues for on-chip optical-electrical (O-E) co-design: the thermal impact during O-E routing and the trade-offs among power consumption, wirelength, and congestion. As a result, the thermal-induced band shift might incur transmission malfunction; the power consumption estimation is inaccurate; thus, only suboptimal results are obtained. To remedy these disadvantages, we present a thermal-aware optical-electrical routing co-design flow to minimize power consumption, thermal impact, and wirelength. Experimental results based on the ISPD 2019 contest benchmarks show that our co-design flow significantly outperforms state-of-the-art works in power consumption, thermal impact, and wire-length.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"50 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在现代片上系统(SoC)和异构集成设计中,光互连是一种很有前途的片上信号通信解决方案,可以提供大带宽和低功耗的高速传输。先前的工作没有处理片上光电(O-E)协同设计的两个主要问题:O-E路由期间的热影响以及功耗,无线长度和拥塞之间的权衡。因此,热致带移可能导致传输故障;功耗估算不准确;因此,只能得到次优结果。为了弥补这些缺点,我们提出了一种热感知的光电路由协同设计流程,以最大限度地减少功耗,热影响和带宽。基于ISPD 2019竞赛基准的实验结果表明,我们的协同设计流程在功耗、热影响和导线长度方面明显优于最先进的作品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal-aware optical-electrical routing codesign for on-chip signal communications
The optical interconnection is a promising solution for on-chip signal communication in modern system-on-chip (SoC) and heterogeneous integration designs, providing large bandwidth and high-speed transmission with low power consumption. Previous works do not handle two main issues for on-chip optical-electrical (O-E) co-design: the thermal impact during O-E routing and the trade-offs among power consumption, wirelength, and congestion. As a result, the thermal-induced band shift might incur transmission malfunction; the power consumption estimation is inaccurate; thus, only suboptimal results are obtained. To remedy these disadvantages, we present a thermal-aware optical-electrical routing co-design flow to minimize power consumption, thermal impact, and wirelength. Experimental results based on the ISPD 2019 contest benchmarks show that our co-design flow significantly outperforms state-of-the-art works in power consumption, thermal impact, and wire-length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Timing macro modeling with graph neural networks Thermal-aware optical-electrical routing codesign for on-chip signal communications PHANES ScaleHLS Terminator on SkyNet: a practical DVFS attack on DNN hardware IP for UAV object detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1