Android应用程序集的污染流分析

William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, Lujo Bauer
{"title":"Android应用程序集的污染流分析","authors":"William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, Lujo Bauer","doi":"10.1145/2614628.2614633","DOIUrl":null,"url":null,"abstract":"One approach to defending against malicious Android applications has been to analyze them to detect potential information leaks. This paper describes a new static taint analysis for Android that combines and augments the FlowDroid and Epicc analyses to precisely track both inter-component and intra-component data flow in a set of Android applications. The analysis takes place in two phases: given a set of applications, we first determine the data flows enabled individually by each application, and the conditions under which these are possible; we then build on these results to enumerate the potentially dangerous data flows enabled by the set of applications as a whole. This paper describes our analysis method, implementation, and experimental results.","PeriodicalId":198433,"journal":{"name":"State Of the Art in Java Program Analysis","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"221","resultStr":"{\"title\":\"Android taint flow analysis for app sets\",\"authors\":\"William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, Lujo Bauer\",\"doi\":\"10.1145/2614628.2614633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One approach to defending against malicious Android applications has been to analyze them to detect potential information leaks. This paper describes a new static taint analysis for Android that combines and augments the FlowDroid and Epicc analyses to precisely track both inter-component and intra-component data flow in a set of Android applications. The analysis takes place in two phases: given a set of applications, we first determine the data flows enabled individually by each application, and the conditions under which these are possible; we then build on these results to enumerate the potentially dangerous data flows enabled by the set of applications as a whole. This paper describes our analysis method, implementation, and experimental results.\",\"PeriodicalId\":198433,\"journal\":{\"name\":\"State Of the Art in Java Program Analysis\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"221\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"State Of the Art in Java Program Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2614628.2614633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"State Of the Art in Java Program Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2614628.2614633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 221

摘要

防御恶意Android应用程序的一种方法是分析它们以检测潜在的信息泄露。本文描述了一种新的Android静态污染分析,它结合并增强了FlowDroid和Epicc分析,以精确跟踪一组Android应用程序中的组件间和组件内数据流。分析分两个阶段进行:给定一组应用程序,我们首先确定每个应用程序单独启用的数据流,以及实现这些数据流的条件;然后,我们在这些结果的基础上,列举整个应用程序集支持的潜在危险数据流。本文介绍了我们的分析方法、实现和实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Android taint flow analysis for app sets
One approach to defending against malicious Android applications has been to analyze them to detect potential information leaks. This paper describes a new static taint analysis for Android that combines and augments the FlowDroid and Epicc analyses to precisely track both inter-component and intra-component data flow in a set of Android applications. The analysis takes place in two phases: given a set of applications, we first determine the data flows enabled individually by each application, and the conditions under which these are possible; we then build on these results to enumerate the potentially dangerous data flows enabled by the set of applications as a whole. This paper describes our analysis method, implementation, and experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Android taint flow analysis for app sets Large-scale configurable static analysis A software product line for static analyses: the OPAL framework Explicit and symbolic techniques for fast and scalable points-to analysis TS4J: a fluent interface for defining and computing typestate analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1