语料库大小和内容对单元选择MaryTTS语音感知质量的影响

Florian Hinterleitner, Benjamin Weiss, S. Möller
{"title":"语料库大小和内容对单元选择MaryTTS语音感知质量的影响","authors":"Florian Hinterleitner, Benjamin Weiss, S. Möller","doi":"10.1109/SLT.2016.7846336","DOIUrl":null,"url":null,"abstract":"State-of-the-art approaches on text-to-speech (TTS) synthesis like unit selection and HMM synthesis are data-driven. Therefore, they use a prerecorded speech corpus of natural speech to build a voice. This paper investigates the influence of the size of the speech corpus on five different perceptual quality dimensions. Six German unit selection voices were created based on subsets of different sizes of the same speech corpus using the MaryTTS synthesis platform. Statistical analysis showed a significant influence of the size of the speech corpus on all of the five dimensions. Surprisingly the voice created from the second largest speech corpus reached the best ratings in almost all dimensions, with the rating in the dimension fluency and intelligibility being significantly higher than the ratings of any other voice. Moreover, we could also verify a significant effect of the synthesized utterance on four of the five perceptual quality dimensions.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"11 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Influence of corpus size and content on the perceptual quality of a unit selection MaryTTS voice\",\"authors\":\"Florian Hinterleitner, Benjamin Weiss, S. Möller\",\"doi\":\"10.1109/SLT.2016.7846336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art approaches on text-to-speech (TTS) synthesis like unit selection and HMM synthesis are data-driven. Therefore, they use a prerecorded speech corpus of natural speech to build a voice. This paper investigates the influence of the size of the speech corpus on five different perceptual quality dimensions. Six German unit selection voices were created based on subsets of different sizes of the same speech corpus using the MaryTTS synthesis platform. Statistical analysis showed a significant influence of the size of the speech corpus on all of the five dimensions. Surprisingly the voice created from the second largest speech corpus reached the best ratings in almost all dimensions, with the rating in the dimension fluency and intelligibility being significantly higher than the ratings of any other voice. Moreover, we could also verify a significant effect of the synthesized utterance on four of the five perceptual quality dimensions.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"11 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最先进的文本到语音合成方法,如单元选择和HMM合成是数据驱动的。因此,他们使用预先录制的自然语音语料库来构建声音。本文研究了语料库大小对五个不同感知质量维度的影响。使用MaryTTS合成平台,基于同一语音语料库的不同大小的子集,创建了六个德语单位选择语音。统计分析表明,语料库的大小对这五个维度都有显著影响。令人惊讶的是,来自第二大语音语料库的声音几乎在所有维度上都获得了最好的评分,在流畅性和可理解性维度上的评分明显高于其他任何声音的评分。此外,我们还可以验证合成话语对五个感知质量维度中的四个维度的显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of corpus size and content on the perceptual quality of a unit selection MaryTTS voice
State-of-the-art approaches on text-to-speech (TTS) synthesis like unit selection and HMM synthesis are data-driven. Therefore, they use a prerecorded speech corpus of natural speech to build a voice. This paper investigates the influence of the size of the speech corpus on five different perceptual quality dimensions. Six German unit selection voices were created based on subsets of different sizes of the same speech corpus using the MaryTTS synthesis platform. Statistical analysis showed a significant influence of the size of the speech corpus on all of the five dimensions. Surprisingly the voice created from the second largest speech corpus reached the best ratings in almost all dimensions, with the rating in the dimension fluency and intelligibility being significantly higher than the ratings of any other voice. Moreover, we could also verify a significant effect of the synthesized utterance on four of the five perceptual quality dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further optimisations of constant Q cepstral processing for integrated utterance and text-dependent speaker verification Learning dialogue dynamics with the method of moments A study of speech distortion conditions in real scenarios for speech processing applications Comparing speaker independent and speaker adapted classification for word prominence detection Influence of corpus size and content on the perceptual quality of a unit selection MaryTTS voice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1