基于深度学习的叠前地震反演

Y. Zheng, Q. Zhang
{"title":"基于深度学习的叠前地震反演","authors":"Y. Zheng, Q. Zhang","doi":"10.3997/2214-4609.201803008","DOIUrl":null,"url":null,"abstract":"We present a study of seismic inversion using deep learning tools. The purpose is to investigate the feasibility of using neural networks to construct acoustic and elastic earth models directly from pre-stack seismic data. Training and testing of the neural networks are done using thousands of synthetic 1D earth models and seismic gathers. We use 2 different types of neural network architectures in our numerical experiments to investigate seismic inversion in different geological scenarios. In both cases, the quality of the prediction is comparable with that obtained from conventional model building processes as such as travel-time and waveform inversion methods. The predicted earth models contain abundant low and medium wave-number information. In terms of performance, training took only less than 30 minutes on 4 GPUs whilst prediction adds negligible cost.","PeriodicalId":231338,"journal":{"name":"First EAGE/PESGB Workshop Machine Learning","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Pre-Stack Seismic Inversion With Deep Learning\",\"authors\":\"Y. Zheng, Q. Zhang\",\"doi\":\"10.3997/2214-4609.201803008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a study of seismic inversion using deep learning tools. The purpose is to investigate the feasibility of using neural networks to construct acoustic and elastic earth models directly from pre-stack seismic data. Training and testing of the neural networks are done using thousands of synthetic 1D earth models and seismic gathers. We use 2 different types of neural network architectures in our numerical experiments to investigate seismic inversion in different geological scenarios. In both cases, the quality of the prediction is comparable with that obtained from conventional model building processes as such as travel-time and waveform inversion methods. The predicted earth models contain abundant low and medium wave-number information. In terms of performance, training took only less than 30 minutes on 4 GPUs whilst prediction adds negligible cost.\",\"PeriodicalId\":231338,\"journal\":{\"name\":\"First EAGE/PESGB Workshop Machine Learning\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First EAGE/PESGB Workshop Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201803008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First EAGE/PESGB Workshop Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201803008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一项利用深度学习工具进行地震反演的研究。目的是探讨利用神经网络直接从叠前地震资料中建立声波和弹性地球模型的可行性。神经网络的训练和测试是使用数千个合成一维地球模型和地震数据集完成的。在数值实验中,我们使用了两种不同类型的神经网络架构来研究不同地质场景下的地震反演。在这两种情况下,预测的质量都可以与传统的模型构建过程(如旅行时间和波形反演方法)相媲美。预测的地球模式含有丰富的低、中波数信息。在性能方面,在4个gpu上训练只需要不到30分钟,而预测增加的成本可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pre-Stack Seismic Inversion With Deep Learning
We present a study of seismic inversion using deep learning tools. The purpose is to investigate the feasibility of using neural networks to construct acoustic and elastic earth models directly from pre-stack seismic data. Training and testing of the neural networks are done using thousands of synthetic 1D earth models and seismic gathers. We use 2 different types of neural network architectures in our numerical experiments to investigate seismic inversion in different geological scenarios. In both cases, the quality of the prediction is comparable with that obtained from conventional model building processes as such as travel-time and waveform inversion methods. The predicted earth models contain abundant low and medium wave-number information. In terms of performance, training took only less than 30 minutes on 4 GPUs whilst prediction adds negligible cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pre-Stack Seismic Inversion With Deep Learning Automatic Facies Classification And Horizon Tracking In 3D Seismic Data Input Data Quality Influence On Lithoclass Predictions In Relation To Supervised Machine Learning Classification And Suppression Of Blending Noise Using CNN Machine Learning To Support Technical Document Indexing, How To Measure The Accuracy?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1