高压电网惯性和一次控制的优化配置

P. Jacquod, Laurent Pagnier
{"title":"高压电网惯性和一次控制的优化配置","authors":"P. Jacquod, Laurent Pagnier","doi":"10.1109/CISS.2019.8692916","DOIUrl":null,"url":null,"abstract":"The energy transition’s ultimate goal is to meet energy demand from human activities sustainably. Accordingly, the penetration of new renewable energy sources (RES) such as photovoltaic panels and wind turbines is increasing in most power grids. In their current configuration, RES are essentially inertialess, therefore, low inertia situations are more and more common, in periods of high RES production, making grid stability a high concern in power grids with high share of RES. It has been suggested that the resulting reduction of overall inertia can be compensated to some extent by the deployment of substitution inertia-synthetic inertia, flywheels, synchronous condensers aso. Of particular importance is to optimize the placement of the limited available substitution inertia. Here, we construct a matrix perturbation theory to optimize inertia and primary control placement under the assumption that both are moderately heterogeneous. Armed with that efficient tool, we construct simple but efficient algorithms that independently determine the optimal geographical distribution of inertia and primary control.","PeriodicalId":123696,"journal":{"name":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","volume":"167 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optimal placement of inertia and primary control in high voltage power grids\",\"authors\":\"P. Jacquod, Laurent Pagnier\",\"doi\":\"10.1109/CISS.2019.8692916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy transition’s ultimate goal is to meet energy demand from human activities sustainably. Accordingly, the penetration of new renewable energy sources (RES) such as photovoltaic panels and wind turbines is increasing in most power grids. In their current configuration, RES are essentially inertialess, therefore, low inertia situations are more and more common, in periods of high RES production, making grid stability a high concern in power grids with high share of RES. It has been suggested that the resulting reduction of overall inertia can be compensated to some extent by the deployment of substitution inertia-synthetic inertia, flywheels, synchronous condensers aso. Of particular importance is to optimize the placement of the limited available substitution inertia. Here, we construct a matrix perturbation theory to optimize inertia and primary control placement under the assumption that both are moderately heterogeneous. Armed with that efficient tool, we construct simple but efficient algorithms that independently determine the optimal geographical distribution of inertia and primary control.\",\"PeriodicalId\":123696,\"journal\":{\"name\":\"2019 53rd Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"167 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS.2019.8692916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2019.8692916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

能源转型的最终目标是可持续地满足人类活动的能源需求。因此,在大多数电网中,光伏板和风力涡轮机等新的可再生能源(RES)的渗透率正在增加。在目前的配置中,RES基本上是无惯性的,因此,在高RES生产时期,低惯性情况越来越普遍,使得电网稳定性成为高RES份额电网的高度关注。有人建议,由此产生的总体惯性的减少可以通过部署替代惯性-合成惯性,飞轮,同步冷凝器来一定程度上补偿。特别重要的是优化有限可用替代惯性的位置。在此,我们构造了一个矩阵摄动理论来优化惯性和初始控制位置,假设两者都是中等异质性的。有了这个有效的工具,我们构建了简单但有效的算法,可以独立地确定惯性和主要控制的最佳地理分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal placement of inertia and primary control in high voltage power grids
The energy transition’s ultimate goal is to meet energy demand from human activities sustainably. Accordingly, the penetration of new renewable energy sources (RES) such as photovoltaic panels and wind turbines is increasing in most power grids. In their current configuration, RES are essentially inertialess, therefore, low inertia situations are more and more common, in periods of high RES production, making grid stability a high concern in power grids with high share of RES. It has been suggested that the resulting reduction of overall inertia can be compensated to some extent by the deployment of substitution inertia-synthetic inertia, flywheels, synchronous condensers aso. Of particular importance is to optimize the placement of the limited available substitution inertia. Here, we construct a matrix perturbation theory to optimize inertia and primary control placement under the assumption that both are moderately heterogeneous. Armed with that efficient tool, we construct simple but efficient algorithms that independently determine the optimal geographical distribution of inertia and primary control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Prospect Theoretical Extension of a Communication Game Under Jamming Smoothed First-order Algorithms for Expectation-valued Constrained Problems Secure Key Generation for Distributed Inference in IoT Invited Presentation Exponential Error Bounds and Decoding Complexity for Block Codes Constructed by Unit Memory Trellis Codes of Branch Length Two Deep learning to detect catheter tips in vivo during photoacoustic-guided catheter interventions : Invited Presentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1