强耦合结构、电力和流体系统的计算控制

V. Shankar, P. Ramegowda, D. Ishihara
{"title":"强耦合结构、电力和流体系统的计算控制","authors":"V. Shankar, P. Ramegowda, D. Ishihara","doi":"10.1080/15502287.2022.2066032","DOIUrl":null,"url":null,"abstract":"Abstract Piezoelectric-structure interaction (PSI) and fluid-structure interaction (FSI) are multi-physics coupled systems. These interactions affect the vibration characteristics of coupled systems and thus such complex coupled systems must be controlled. This paper proposes computational control based on the finite element method for strongly coupled multi-physics analysis of the PSI of a thin flexible piezoelectric bimorph actuator. The vibration characteristics and the effect of direct velocity and displacement feedback (DVDFB) control in coupled systems are investigated. The displacement and velocity feedback gains are used together as well as separately. DVDFB control is extended to the FSI of stiff and soft structures to study vibration characteristics using active control and compare the stability of the two types of structure. The results of PSI show a reduction in actuator displacement amplitude and a shift in the resonance frequency due to DVDFB control. For FSI, the results for a stiff material show a reduction in displacement. The velocity feedback gain has no effect for a stiff material and leads to instability due to a large control force. The results for a soft material show a reduction in displacement and amplitude and more stability compared to the case for the stiff material.","PeriodicalId":315058,"journal":{"name":"International Journal for Computational Methods in Engineering Science and Mechanics","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational control for strongly coupled structure, electric, and fluid systems\",\"authors\":\"V. Shankar, P. Ramegowda, D. Ishihara\",\"doi\":\"10.1080/15502287.2022.2066032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Piezoelectric-structure interaction (PSI) and fluid-structure interaction (FSI) are multi-physics coupled systems. These interactions affect the vibration characteristics of coupled systems and thus such complex coupled systems must be controlled. This paper proposes computational control based on the finite element method for strongly coupled multi-physics analysis of the PSI of a thin flexible piezoelectric bimorph actuator. The vibration characteristics and the effect of direct velocity and displacement feedback (DVDFB) control in coupled systems are investigated. The displacement and velocity feedback gains are used together as well as separately. DVDFB control is extended to the FSI of stiff and soft structures to study vibration characteristics using active control and compare the stability of the two types of structure. The results of PSI show a reduction in actuator displacement amplitude and a shift in the resonance frequency due to DVDFB control. For FSI, the results for a stiff material show a reduction in displacement. The velocity feedback gain has no effect for a stiff material and leads to instability due to a large control force. The results for a soft material show a reduction in displacement and amplitude and more stability compared to the case for the stiff material.\",\"PeriodicalId\":315058,\"journal\":{\"name\":\"International Journal for Computational Methods in Engineering Science and Mechanics\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Computational Methods in Engineering Science and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15502287.2022.2066032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Computational Methods in Engineering Science and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15502287.2022.2066032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

压电-结构相互作用(PSI)和流固耦合(FSI)是多物理场耦合系统。这些相互作用会影响耦合系统的振动特性,因此必须对这种复杂的耦合系统进行控制。本文提出了一种基于有限元法的计算控制方法,用于柔性压电双晶片作动器的多物理场强耦合分析。研究了耦合系统的振动特性和直接速度与位移反馈控制的效果。位移和速度反馈增益可以同时使用,也可以单独使用。将DVDFB控制扩展到刚性和软结构的振动特性,采用主动控制方法研究两种结构的振动特性,并比较两种结构的稳定性。PSI的结果表明,由于DVDFB控制,驱动器位移幅度减小,共振频率发生移位。对于FSI,刚性材料的结果显示位移减少。速度反馈增益对刚性材料没有影响,并且由于较大的控制力而导致不稳定。结果表明,与刚性材料相比,软材料的位移和振幅减小,稳定性更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational control for strongly coupled structure, electric, and fluid systems
Abstract Piezoelectric-structure interaction (PSI) and fluid-structure interaction (FSI) are multi-physics coupled systems. These interactions affect the vibration characteristics of coupled systems and thus such complex coupled systems must be controlled. This paper proposes computational control based on the finite element method for strongly coupled multi-physics analysis of the PSI of a thin flexible piezoelectric bimorph actuator. The vibration characteristics and the effect of direct velocity and displacement feedback (DVDFB) control in coupled systems are investigated. The displacement and velocity feedback gains are used together as well as separately. DVDFB control is extended to the FSI of stiff and soft structures to study vibration characteristics using active control and compare the stability of the two types of structure. The results of PSI show a reduction in actuator displacement amplitude and a shift in the resonance frequency due to DVDFB control. For FSI, the results for a stiff material show a reduction in displacement. The velocity feedback gain has no effect for a stiff material and leads to instability due to a large control force. The results for a soft material show a reduction in displacement and amplitude and more stability compared to the case for the stiff material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coarse graining with control points: a cubic-Bézier based approach to modeling athermal fibrous materials Effect of axial preloads on torsional behavior of superelastic shape memory alloy tubes – experimental investigation and simulation/predictions of intricate inner loops A microelement plastic strain accumulation model for fatigue life prediction Optimizing integration point density for exponential finite element shape functions for phase-field modeling of fracture in functionally graded materials Mechanical design of an upper limb robotic rehabilitation system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1