修改后的引导过滤器

Qi Cheng, P. Bondon
{"title":"修改后的引导过滤器","authors":"Qi Cheng, P. Bondon","doi":"10.1109/ROSE.2009.5356002","DOIUrl":null,"url":null,"abstract":"This paper presents a new method to draw particles in the particle filter. The standard bootstrap filter draw particles randomly from the prior density which does not use the latest information of the observation. Some improvements consist in using extended Kalman filter or unscented Kalman filter to produce the importance distribution in order to move the particles from the domain of low likelihood to the domain of high likelihood by using the latest information of the observation. These methods work well when the state noise is small. We propose a modified bootstrap filter which uses a new method to draw the particles in the scenario of a big state noise. We show through numerical examples that it outperforms the bootstrap filter with the same computational complexity","PeriodicalId":107220,"journal":{"name":"2009 IEEE International Workshop on Robotic and Sensors Environments","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A modified bootstrap filter\",\"authors\":\"Qi Cheng, P. Bondon\",\"doi\":\"10.1109/ROSE.2009.5356002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method to draw particles in the particle filter. The standard bootstrap filter draw particles randomly from the prior density which does not use the latest information of the observation. Some improvements consist in using extended Kalman filter or unscented Kalman filter to produce the importance distribution in order to move the particles from the domain of low likelihood to the domain of high likelihood by using the latest information of the observation. These methods work well when the state noise is small. We propose a modified bootstrap filter which uses a new method to draw the particles in the scenario of a big state noise. We show through numerical examples that it outperforms the bootstrap filter with the same computational complexity\",\"PeriodicalId\":107220,\"journal\":{\"name\":\"2009 IEEE International Workshop on Robotic and Sensors Environments\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Workshop on Robotic and Sensors Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROSE.2009.5356002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Workshop on Robotic and Sensors Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE.2009.5356002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种在粒子滤波器中绘制粒子的新方法。标准自举滤波器从先验密度中随机抽取粒子,不使用观测的最新信息。采用扩展卡尔曼滤波或无气味卡尔曼滤波产生重要度分布,利用观测的最新信息将粒子从低似然域移动到高似然域。这些方法在状态噪声较小的情况下效果良好。我们提出了一种改进的自举滤波器,它采用了一种新的方法来绘制大状态噪声情况下的粒子。我们通过数值例子表明,在相同的计算复杂度下,它优于自举滤波器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A modified bootstrap filter
This paper presents a new method to draw particles in the particle filter. The standard bootstrap filter draw particles randomly from the prior density which does not use the latest information of the observation. Some improvements consist in using extended Kalman filter or unscented Kalman filter to produce the importance distribution in order to move the particles from the domain of low likelihood to the domain of high likelihood by using the latest information of the observation. These methods work well when the state noise is small. We propose a modified bootstrap filter which uses a new method to draw the particles in the scenario of a big state noise. We show through numerical examples that it outperforms the bootstrap filter with the same computational complexity
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A modified bootstrap filter Real-time 3D reconstruction for mobile robot using catadioptric cameras Large area smart tactile sensor for rescue robot Mobile robot self-localization system using IR-UWB sensor in indoor environments A high precision sensor system for indoor object positioning and monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1