法律领域的汉语问题分类

Guangyi Xiao, Even Chow, Hao Chen, Jiqian Mo, J. Guo, Zhiguo Gong
{"title":"法律领域的汉语问题分类","authors":"Guangyi Xiao, Even Chow, Hao Chen, Jiqian Mo, J. Guo, Zhiguo Gong","doi":"10.1109/ICEBE.2017.41","DOIUrl":null,"url":null,"abstract":"Question classification is an essential part of Question Answering system(QA). This paper introduces our research work on automatic question classification that depends on the sample set including questions from legal forum. We propose a taxonomy for law question, and divide questions into three main parts: civil, criminal and administrative according to Chinese legal system. We have experimented with four machine learning algorithms: Nearest Neighbors (NN), Naïve Bayes (NB), Logistic Regression (LR) and Support Vector Machines (SVM) using two kinds of features: TF-IDF and word2vec embeddings. Further, we used fastText and adjusted the parameters to get the better results. The research shows high accuracy in Chinese question classification in law domain. Moreover, to the best of our knowledge, our work is the first attempt in this promising domain.","PeriodicalId":347774,"journal":{"name":"2017 IEEE 14th International Conference on e-Business Engineering (ICEBE)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Chinese Questions Classification in the Law Domain\",\"authors\":\"Guangyi Xiao, Even Chow, Hao Chen, Jiqian Mo, J. Guo, Zhiguo Gong\",\"doi\":\"10.1109/ICEBE.2017.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Question classification is an essential part of Question Answering system(QA). This paper introduces our research work on automatic question classification that depends on the sample set including questions from legal forum. We propose a taxonomy for law question, and divide questions into three main parts: civil, criminal and administrative according to Chinese legal system. We have experimented with four machine learning algorithms: Nearest Neighbors (NN), Naïve Bayes (NB), Logistic Regression (LR) and Support Vector Machines (SVM) using two kinds of features: TF-IDF and word2vec embeddings. Further, we used fastText and adjusted the parameters to get the better results. The research shows high accuracy in Chinese question classification in law domain. Moreover, to the best of our knowledge, our work is the first attempt in this promising domain.\",\"PeriodicalId\":347774,\"journal\":{\"name\":\"2017 IEEE 14th International Conference on e-Business Engineering (ICEBE)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Conference on e-Business Engineering (ICEBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEBE.2017.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on e-Business Engineering (ICEBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEBE.2017.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

问题分类是问答系统(QA)的重要组成部分。本文介绍了基于包含法律论坛问题的样本集的问题自动分类的研究工作。本文提出了法律问题的分类法,根据中国的法律制度,将法律问题分为民事、刑事和行政三个主要部分。我们已经试验了四种机器学习算法:最近邻(NN)、Naï 5贝叶斯(NB)、逻辑回归(LR)和支持向量机(SVM),使用两种特征:TF-IDF和word2vec嵌入。此外,我们使用fastText并调整参数以获得更好的结果。研究表明,该方法对法律领域的中文问题分类具有较高的准确率。此外,据我们所知,我们的工作是在这个有前途的领域的第一次尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chinese Questions Classification in the Law Domain
Question classification is an essential part of Question Answering system(QA). This paper introduces our research work on automatic question classification that depends on the sample set including questions from legal forum. We propose a taxonomy for law question, and divide questions into three main parts: civil, criminal and administrative according to Chinese legal system. We have experimented with four machine learning algorithms: Nearest Neighbors (NN), Naïve Bayes (NB), Logistic Regression (LR) and Support Vector Machines (SVM) using two kinds of features: TF-IDF and word2vec embeddings. Further, we used fastText and adjusted the parameters to get the better results. The research shows high accuracy in Chinese question classification in law domain. Moreover, to the best of our knowledge, our work is the first attempt in this promising domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Integrated System Optimization Based on the Boiler Combustion and Denitration with Denitration Operating Cost Consideration Chinese Questions Classification in the Law Domain Dust Removal with Boundary and Spatial Constraint for Videos Captured in Car Indexing for Large Scale Data Querying Based on Spark SQL Finding K-Most Influential Users in Social Networks for Information Diffusion Based on Network Structure and Different User Behavioral Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1