Xiang Li, D. Song, Peng Zhang, Guangliang Yu, Yuexian Hou, B. Hu
{"title":"基于卷积递归神经网络的多通道脑电数据情绪识别","authors":"Xiang Li, D. Song, Peng Zhang, Guangliang Yu, Yuexian Hou, B. Hu","doi":"10.1109/BIBM.2016.7822545","DOIUrl":null,"url":null,"abstract":"Automatic emotion recognition based on multi-channel neurophysiological signals, as a challenging pattern recognition task, is becoming an important computer-aided method for emotional disorder diagnoses in neurology and psychiatry. Traditional approaches require designing and extracting a range of features from single or multiple channel signals based on extensive domain knowledge. This may be an obstacle for non-domain experts. Moreover, traditional feature fusion method can not fully utilize correlation information between different channels. In this paper, we propose a preprocessing method that encapsulates the multi-channel neurophysiological signals into grid-like frames through wavelet and scalogram transform. We further design a hybrid deep learning model that combines the ‘Convolutional Neural Network (CNN)’ and ‘Recurrent Neural Network (RNN)’, for extracting task-related features, mining inter-channel correlation and incorporating contextual information from those frames. Experiments are carried out, in a trial-level emotion recognition task, on the DEAP benchmarking dataset. Our results demonstrate the effectiveness of the proposed methods, with respect to the emotional dimensions of Valence and Arousal.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"176","resultStr":"{\"title\":\"Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network\",\"authors\":\"Xiang Li, D. Song, Peng Zhang, Guangliang Yu, Yuexian Hou, B. Hu\",\"doi\":\"10.1109/BIBM.2016.7822545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic emotion recognition based on multi-channel neurophysiological signals, as a challenging pattern recognition task, is becoming an important computer-aided method for emotional disorder diagnoses in neurology and psychiatry. Traditional approaches require designing and extracting a range of features from single or multiple channel signals based on extensive domain knowledge. This may be an obstacle for non-domain experts. Moreover, traditional feature fusion method can not fully utilize correlation information between different channels. In this paper, we propose a preprocessing method that encapsulates the multi-channel neurophysiological signals into grid-like frames through wavelet and scalogram transform. We further design a hybrid deep learning model that combines the ‘Convolutional Neural Network (CNN)’ and ‘Recurrent Neural Network (RNN)’, for extracting task-related features, mining inter-channel correlation and incorporating contextual information from those frames. Experiments are carried out, in a trial-level emotion recognition task, on the DEAP benchmarking dataset. Our results demonstrate the effectiveness of the proposed methods, with respect to the emotional dimensions of Valence and Arousal.\",\"PeriodicalId\":345384,\"journal\":{\"name\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"176\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network
Automatic emotion recognition based on multi-channel neurophysiological signals, as a challenging pattern recognition task, is becoming an important computer-aided method for emotional disorder diagnoses in neurology and psychiatry. Traditional approaches require designing and extracting a range of features from single or multiple channel signals based on extensive domain knowledge. This may be an obstacle for non-domain experts. Moreover, traditional feature fusion method can not fully utilize correlation information between different channels. In this paper, we propose a preprocessing method that encapsulates the multi-channel neurophysiological signals into grid-like frames through wavelet and scalogram transform. We further design a hybrid deep learning model that combines the ‘Convolutional Neural Network (CNN)’ and ‘Recurrent Neural Network (RNN)’, for extracting task-related features, mining inter-channel correlation and incorporating contextual information from those frames. Experiments are carried out, in a trial-level emotion recognition task, on the DEAP benchmarking dataset. Our results demonstrate the effectiveness of the proposed methods, with respect to the emotional dimensions of Valence and Arousal.