视频检索:一种基于Kirsch描述符的精确方法

B. H. Shekar, K. R. Holla, M. Kumari
{"title":"视频检索:一种基于Kirsch描述符的精确方法","authors":"B. H. Shekar, K. R. Holla, M. Kumari","doi":"10.1109/IC3I.2014.7019753","DOIUrl":null,"url":null,"abstract":"In this paper, a video retrieval model is developed based on Kirsch local descriptor. In the first stage, the input video is segmented into shots and keyframes are extracted. In the next stage, local descriptors are extracted from each keyframe and clustered into k clusters using k-means clustering procedure. Given a query frame, the local descriptors are extracted from it in a similar manner, and then compared with the descriptors of the database video using k-nearest neighbor search algorithm to find the matching keyframe. Experiments have been performed on the TRECVID video segments to demonstrate the performance of the proposed approach for video retrieval applications.","PeriodicalId":430848,"journal":{"name":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Video retrieval: An accurate approach based on Kirsch descriptor\",\"authors\":\"B. H. Shekar, K. R. Holla, M. Kumari\",\"doi\":\"10.1109/IC3I.2014.7019753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a video retrieval model is developed based on Kirsch local descriptor. In the first stage, the input video is segmented into shots and keyframes are extracted. In the next stage, local descriptors are extracted from each keyframe and clustered into k clusters using k-means clustering procedure. Given a query frame, the local descriptors are extracted from it in a similar manner, and then compared with the descriptors of the database video using k-nearest neighbor search algorithm to find the matching keyframe. Experiments have been performed on the TRECVID video segments to demonstrate the performance of the proposed approach for video retrieval applications.\",\"PeriodicalId\":430848,\"journal\":{\"name\":\"2014 International Conference on Contemporary Computing and Informatics (IC3I)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Contemporary Computing and Informatics (IC3I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3I.2014.7019753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I.2014.7019753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于Kirsch局部描述符的视频检索模型。在第一阶段,输入视频被分割成镜头并提取关键帧。在下一阶段,从每个关键帧中提取局部描述符,并使用k-means聚类过程将其聚类到k个聚类中。给定一个查询帧,以类似的方式从中提取局部描述符,然后使用k近邻搜索算法与数据库视频的描述符进行比较,找到匹配的关键帧。在TRECVID视频片段上进行了实验,验证了该方法在视频检索应用中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Video retrieval: An accurate approach based on Kirsch descriptor
In this paper, a video retrieval model is developed based on Kirsch local descriptor. In the first stage, the input video is segmented into shots and keyframes are extracted. In the next stage, local descriptors are extracted from each keyframe and clustered into k clusters using k-means clustering procedure. Given a query frame, the local descriptors are extracted from it in a similar manner, and then compared with the descriptors of the database video using k-nearest neighbor search algorithm to find the matching keyframe. Experiments have been performed on the TRECVID video segments to demonstrate the performance of the proposed approach for video retrieval applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart home and smart city solutions enabled by 5G, IoT, AAI and CoT services Video retrieval: An accurate approach based on Kirsch descriptor Microarray data classification using Fuzzy K-Nearest Neighbor Assessment of data quality in Web sites: towards a model A novel cross layer wireless mesh network protocol for distributed generation in electrical networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1