R. R. Elfa, M. K. Ahmad, N. Nafarizal, M. Z. Sahdan, C. Soon
{"title":"针状等离子体射流表面改性玻璃的亲水性","authors":"R. R. Elfa, M. K. Ahmad, N. Nafarizal, M. Z. Sahdan, C. Soon","doi":"10.1109/SMELEC.2016.7573629","DOIUrl":null,"url":null,"abstract":"The application of needle plasma jet using argon gas for surface modification is presented in this paper. The main objective is to modify the surface property of microscope slide glass from hydrophilic surface approximately to superhydrophilic surface. The power supply to the needle plasma jet was set to 400 kV and 1 kHz frequency with highly purity argon (Ar) gas as working gas to generate plasma condition. A copper wire was used as a powered electrode and needle. Water contact angle measurement was used to investigate the surface properties under the different period of treatment and storage time. As a result, we found that the sample of exposure for 300 seconds shows a great result in superhydrophilic surface until 6 hours of storage. This understanding is important in device fabrication application using the glass substrate.","PeriodicalId":169983,"journal":{"name":"2016 IEEE International Conference on Semiconductor Electronics (ICSE)","volume":"176 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hydrophilic property of glass treated by needle plasma jet for surface modification\",\"authors\":\"R. R. Elfa, M. K. Ahmad, N. Nafarizal, M. Z. Sahdan, C. Soon\",\"doi\":\"10.1109/SMELEC.2016.7573629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of needle plasma jet using argon gas for surface modification is presented in this paper. The main objective is to modify the surface property of microscope slide glass from hydrophilic surface approximately to superhydrophilic surface. The power supply to the needle plasma jet was set to 400 kV and 1 kHz frequency with highly purity argon (Ar) gas as working gas to generate plasma condition. A copper wire was used as a powered electrode and needle. Water contact angle measurement was used to investigate the surface properties under the different period of treatment and storage time. As a result, we found that the sample of exposure for 300 seconds shows a great result in superhydrophilic surface until 6 hours of storage. This understanding is important in device fabrication application using the glass substrate.\",\"PeriodicalId\":169983,\"journal\":{\"name\":\"2016 IEEE International Conference on Semiconductor Electronics (ICSE)\",\"volume\":\"176 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Semiconductor Electronics (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2016.7573629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Semiconductor Electronics (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2016.7573629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrophilic property of glass treated by needle plasma jet for surface modification
The application of needle plasma jet using argon gas for surface modification is presented in this paper. The main objective is to modify the surface property of microscope slide glass from hydrophilic surface approximately to superhydrophilic surface. The power supply to the needle plasma jet was set to 400 kV and 1 kHz frequency with highly purity argon (Ar) gas as working gas to generate plasma condition. A copper wire was used as a powered electrode and needle. Water contact angle measurement was used to investigate the surface properties under the different period of treatment and storage time. As a result, we found that the sample of exposure for 300 seconds shows a great result in superhydrophilic surface until 6 hours of storage. This understanding is important in device fabrication application using the glass substrate.