{"title":"气体二氧化碳通过孔板混合系统进入水射流的传质过程","authors":"Y. Zheng, R. Amano","doi":"10.1115/imece2000-1526","DOIUrl":null,"url":null,"abstract":"\n This paper summarizes the mass transfer modeling that can simulate the process of gaseous carbon dioxide dissolution into water in an orifice mixing system. In order to establish the operating characteristics of the orifice mixing system, ordinary tap water and pure carbon dioxide were used as the liquid-gas system. Using the model, computations were performed for an orifice mixing system to better understand the mass transfer process of gaseous carbon dioxide into water through both the elbow tube and the junction Venturi-tube. All computed results show different performance of the carbon dioxide dissolution rates for the given inlet water and carbon dioxide conditions of the four different designs of the junction type Venturi-tubes and an orifice mixing system. After examining the computed results it was found that the mass transfer efficiency of gaseous carbon dioxide into the water stream through the orifice mixing system was superior to that through the junction Venturi-tubes.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"106 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass Transfer Process of Gaseous Carbon Dioxide Into Water Jet Through Orifice Mixing System\",\"authors\":\"Y. Zheng, R. Amano\",\"doi\":\"10.1115/imece2000-1526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper summarizes the mass transfer modeling that can simulate the process of gaseous carbon dioxide dissolution into water in an orifice mixing system. In order to establish the operating characteristics of the orifice mixing system, ordinary tap water and pure carbon dioxide were used as the liquid-gas system. Using the model, computations were performed for an orifice mixing system to better understand the mass transfer process of gaseous carbon dioxide into water through both the elbow tube and the junction Venturi-tube. All computed results show different performance of the carbon dioxide dissolution rates for the given inlet water and carbon dioxide conditions of the four different designs of the junction type Venturi-tubes and an orifice mixing system. After examining the computed results it was found that the mass transfer efficiency of gaseous carbon dioxide into the water stream through the orifice mixing system was superior to that through the junction Venturi-tubes.\",\"PeriodicalId\":120929,\"journal\":{\"name\":\"Heat Transfer: Volume 4\",\"volume\":\"106 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 4\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mass Transfer Process of Gaseous Carbon Dioxide Into Water Jet Through Orifice Mixing System
This paper summarizes the mass transfer modeling that can simulate the process of gaseous carbon dioxide dissolution into water in an orifice mixing system. In order to establish the operating characteristics of the orifice mixing system, ordinary tap water and pure carbon dioxide were used as the liquid-gas system. Using the model, computations were performed for an orifice mixing system to better understand the mass transfer process of gaseous carbon dioxide into water through both the elbow tube and the junction Venturi-tube. All computed results show different performance of the carbon dioxide dissolution rates for the given inlet water and carbon dioxide conditions of the four different designs of the junction type Venturi-tubes and an orifice mixing system. After examining the computed results it was found that the mass transfer efficiency of gaseous carbon dioxide into the water stream through the orifice mixing system was superior to that through the junction Venturi-tubes.