仿生非线性智能控制器的设计与应用

Liu Bao, L. Fei, Wang Junhong
{"title":"仿生非线性智能控制器的设计与应用","authors":"Liu Bao, L. Fei, Wang Junhong","doi":"10.1109/GCIS.2012.80","DOIUrl":null,"url":null,"abstract":"Based on the bi-modulation mechanism in body, we present reinforcement and suppress intelligent controller (RSIC), and design its control algorithm in this paper. Corresponding to the relative physiological system, we design the structure of RSIC, which includes super management unit (SMU), reinforcement control unit (RCU), suppress control unit (SCU), and assistant control unit (ACU). When set point changes or great error appears, the RCU first takes an effect. And the RCU will output a high or low limit value with a bionic filter, which can accelerate the rise time of control system. After a set time, the SCU will be enabled and output a reverse output compare to output of RCU with another bionic filter, which may reduce or avoid the overshoot or vibration. The final comprehensive effect of RCU and SCU is the coming control stable output. When the control system gets a stable status, the ACU will work with the conventional PI law to improve the control accuracy. SMU can make RCU, SCU, and ACU cooperate with each other. The simulation results indicate that RSIC has better control performance than conventional PID control algorithm.","PeriodicalId":337629,"journal":{"name":"2012 Third Global Congress on Intelligent Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Design and Application for a Bio-inspired Nonlinear Intelligent Controller\",\"authors\":\"Liu Bao, L. Fei, Wang Junhong\",\"doi\":\"10.1109/GCIS.2012.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the bi-modulation mechanism in body, we present reinforcement and suppress intelligent controller (RSIC), and design its control algorithm in this paper. Corresponding to the relative physiological system, we design the structure of RSIC, which includes super management unit (SMU), reinforcement control unit (RCU), suppress control unit (SCU), and assistant control unit (ACU). When set point changes or great error appears, the RCU first takes an effect. And the RCU will output a high or low limit value with a bionic filter, which can accelerate the rise time of control system. After a set time, the SCU will be enabled and output a reverse output compare to output of RCU with another bionic filter, which may reduce or avoid the overshoot or vibration. The final comprehensive effect of RCU and SCU is the coming control stable output. When the control system gets a stable status, the ACU will work with the conventional PI law to improve the control accuracy. SMU can make RCU, SCU, and ACU cooperate with each other. The simulation results indicate that RSIC has better control performance than conventional PID control algorithm.\",\"PeriodicalId\":337629,\"journal\":{\"name\":\"2012 Third Global Congress on Intelligent Systems\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Third Global Congress on Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCIS.2012.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2012.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于人体的双调制机制,提出了增强抑制智能控制器(RSIC),并设计了其控制算法。针对相应的生理系统,设计了RSIC的结构,包括超级管理单元(SMU)、强化控制单元(RCU)、抑制控制单元(SCU)和辅助控制单元(ACU)。当设定点发生变化或出现较大错误时,RCU首先生效。RCU采用仿生滤波器输出高、低临界值,加快控制系统的上升时间。在设定的时间后,SCU将被启用并输出与RCU输出相反的输出,另一个仿生滤波器可以减少或避免超调或振动。RCU和SCU的最终综合效果是即将到来的控制稳定输出。当控制系统达到稳定状态时,ACU将利用传统的PI律来提高控制精度。SMU可以使RCU、SCU和ACU相互协作。仿真结果表明,RSIC比传统的PID控制算法具有更好的控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Design and Application for a Bio-inspired Nonlinear Intelligent Controller
Based on the bi-modulation mechanism in body, we present reinforcement and suppress intelligent controller (RSIC), and design its control algorithm in this paper. Corresponding to the relative physiological system, we design the structure of RSIC, which includes super management unit (SMU), reinforcement control unit (RCU), suppress control unit (SCU), and assistant control unit (ACU). When set point changes or great error appears, the RCU first takes an effect. And the RCU will output a high or low limit value with a bionic filter, which can accelerate the rise time of control system. After a set time, the SCU will be enabled and output a reverse output compare to output of RCU with another bionic filter, which may reduce or avoid the overshoot or vibration. The final comprehensive effect of RCU and SCU is the coming control stable output. When the control system gets a stable status, the ACU will work with the conventional PI law to improve the control accuracy. SMU can make RCU, SCU, and ACU cooperate with each other. The simulation results indicate that RSIC has better control performance than conventional PID control algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Different Meteorological Series The Design and Application for a Bio-inspired Nonlinear Intelligent Controller Problem-Specific Knowledge Based Heuristic Algorithm to Solve Satellite Broadcast Scheduling Problem Micro Pitch and Vary Speed for Extreme Value Search MPPT Method of DFIG Academic Relation Classification Rules Extraction with Correlation Feature Weight Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1