将秩序带入混乱

Y. Won, Joontaek Oh, Jaemin Jung, Gyeongyeol Choi, Seongbae Son, J. Hwang, Sangyeun Cho
{"title":"将秩序带入混乱","authors":"Y. Won, Joontaek Oh, Jaemin Jung, Gyeongyeol Choi, Seongbae Son, J. Hwang, Sangyeun Cho","doi":"10.1145/3242091","DOIUrl":null,"url":null,"abstract":"This work is dedicated to eliminating the overhead required for guaranteeing the storage order in the modern IO stack. The existing block device adopts a prohibitively expensive approach in ensuring the storage order among write requests: interleaving the write requests with Transfer-and-Flush. For exploiting the cache barrier command for flash storage, we overhaul the IO scheduler, the dispatch module, and the filesystem so that these layers are orchestrated to preserve the ordering condition imposed by the application with which the associated data blocks are made durable. The key ingredients of Barrier-Enabled IO stack are Epoch-based IO scheduling, Order-Preserving Dispatch, and Dual-Mode Journaling. Barrier-enabled IO stack can control the storage order without Transfer-and-Flush overhead. We implement the barrier-enabled IO stack in server as well as in mobile platforms. SQLite performance increases by 270% and 75%, in server and in smartphone, respectively. In a server storage, BarrierFS brings as much as by 43 × and by 73× performance gain in MySQL and SQLite, respectively, against EXT4 via relaxing the durability of a transaction.","PeriodicalId":273014,"journal":{"name":"ACM Transactions on Storage (TOS)","volume":"355 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bringing Order to Chaos\",\"authors\":\"Y. Won, Joontaek Oh, Jaemin Jung, Gyeongyeol Choi, Seongbae Son, J. Hwang, Sangyeun Cho\",\"doi\":\"10.1145/3242091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is dedicated to eliminating the overhead required for guaranteeing the storage order in the modern IO stack. The existing block device adopts a prohibitively expensive approach in ensuring the storage order among write requests: interleaving the write requests with Transfer-and-Flush. For exploiting the cache barrier command for flash storage, we overhaul the IO scheduler, the dispatch module, and the filesystem so that these layers are orchestrated to preserve the ordering condition imposed by the application with which the associated data blocks are made durable. The key ingredients of Barrier-Enabled IO stack are Epoch-based IO scheduling, Order-Preserving Dispatch, and Dual-Mode Journaling. Barrier-enabled IO stack can control the storage order without Transfer-and-Flush overhead. We implement the barrier-enabled IO stack in server as well as in mobile platforms. SQLite performance increases by 270% and 75%, in server and in smartphone, respectively. In a server storage, BarrierFS brings as much as by 43 × and by 73× performance gain in MySQL and SQLite, respectively, against EXT4 via relaxing the durability of a transaction.\",\"PeriodicalId\":273014,\"journal\":{\"name\":\"ACM Transactions on Storage (TOS)\",\"volume\":\"355 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Storage (TOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3242091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Storage (TOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这项工作致力于消除在现代IO堆栈中保证存储顺序所需的开销。现有的块设备在确保写请求之间的存储顺序方面采用了一种代价高昂的方法:将写请求与Transfer-and-Flush交织在一起。为了利用flash存储的缓存屏障命令,我们彻底检查了IO调度器、调度模块和文件系统,以便对这些层进行编排,以保持应用程序所施加的排序条件,从而使相关的数据块持久。Barrier-Enabled IO堆栈的关键组成部分是基于时代的IO调度、保序调度和双模式日志记录。启用屏障的IO堆栈可以控制存储顺序,而不需要传输和刷新开销。我们在服务器和移动平台上实现了启用屏障的IO堆栈。在服务器和智能手机上,SQLite性能分别提高了270%和75%。在服务器存储中,通过放宽事务的持久性,BarrierFS在MySQL和SQLite中分别比EXT4带来了43倍和73倍的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bringing Order to Chaos
This work is dedicated to eliminating the overhead required for guaranteeing the storage order in the modern IO stack. The existing block device adopts a prohibitively expensive approach in ensuring the storage order among write requests: interleaving the write requests with Transfer-and-Flush. For exploiting the cache barrier command for flash storage, we overhaul the IO scheduler, the dispatch module, and the filesystem so that these layers are orchestrated to preserve the ordering condition imposed by the application with which the associated data blocks are made durable. The key ingredients of Barrier-Enabled IO stack are Epoch-based IO scheduling, Order-Preserving Dispatch, and Dual-Mode Journaling. Barrier-enabled IO stack can control the storage order without Transfer-and-Flush overhead. We implement the barrier-enabled IO stack in server as well as in mobile platforms. SQLite performance increases by 270% and 75%, in server and in smartphone, respectively. In a server storage, BarrierFS brings as much as by 43 × and by 73× performance gain in MySQL and SQLite, respectively, against EXT4 via relaxing the durability of a transaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WebAssembly-based Delta Sync for Cloud Storage Services DEFUSE: An Interface for Fast and Correct User Space File System Access Donag: Generating Efficient Patches and Diffs for Compressed Archives Building GC-free Key-value Store on HM-SMR Drives with ZoneFS Kangaroo: Theory and Practice of Caching Billions of Tiny Objects on Flash
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1