{"title":"视距MIMO信道容量","authors":"Heedong Do, N. Lee, A. Lozano","doi":"10.1109/ISIT44484.2020.9173939","DOIUrl":null,"url":null,"abstract":"We establish an upper bound on the informationtheoretic capacity of line-of-sight (LOS) multiantenna channels with arbitrary antenna arrangements and identify array structures that, properly configured, can attain at least 96.6% of such capacity at every signal-to-noise ratio (SNR). In the process, we determine how to configure the arrays as a function of the SNR. At low- and high-SNR specifically, the configured arrays revert to simpler structures and become capacity-achieving.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"15 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Capacity of Line-of-Sight MIMO Channels\",\"authors\":\"Heedong Do, N. Lee, A. Lozano\",\"doi\":\"10.1109/ISIT44484.2020.9173939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish an upper bound on the informationtheoretic capacity of line-of-sight (LOS) multiantenna channels with arbitrary antenna arrangements and identify array structures that, properly configured, can attain at least 96.6% of such capacity at every signal-to-noise ratio (SNR). In the process, we determine how to configure the arrays as a function of the SNR. At low- and high-SNR specifically, the configured arrays revert to simpler structures and become capacity-achieving.\",\"PeriodicalId\":159311,\"journal\":{\"name\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"15 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT44484.2020.9173939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9173939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We establish an upper bound on the informationtheoretic capacity of line-of-sight (LOS) multiantenna channels with arbitrary antenna arrangements and identify array structures that, properly configured, can attain at least 96.6% of such capacity at every signal-to-noise ratio (SNR). In the process, we determine how to configure the arrays as a function of the SNR. At low- and high-SNR specifically, the configured arrays revert to simpler structures and become capacity-achieving.