基于因果准则的振动对微穿孔隔板优化的影响

T. Bravo, C. Maury
{"title":"基于因果准则的振动对微穿孔隔板优化的影响","authors":"T. Bravo, C. Maury","doi":"10.1121/2.0001435","DOIUrl":null,"url":null,"abstract":"Micro-Perforated Panels constitute an alternative to classical porous materials in demanding environments due to fire-proofness, cleanability and lightweight properties. However, its performance is greatly determined by a proper selection of the constitutive physical factors. To find the optimal set of parameters, a combinatorial optimization problem has to be solved using a cost function that classically includes the absorption coefficient averaged over a frequency band. Recently, another criterion has been considered by the use of a causal integral that relates the thickness of the partition to the amount of absorption that can be achieved over a desired bandwidth. This provides a set of states that present critically-coupled resonant behavior and perfect absorption at the requested frequency while maximizing the total absorption. When considering sub-millimetric panel thickness or membranes, the effect of the panel vibrations has to be taken into account. In this study, we have extended the causality criterion to consider the effect of the panel vibration of the perforations impedance. Another model has also been examined to account for the cavities Helmholtz-type resonance and their influence on the corresponding critically-coupled states.","PeriodicalId":300779,"journal":{"name":"180th Meeting of the Acoustical Society of America","volume":"52 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vibrational effects on the optimization of micro-perforated partitions based on a causality criterion\",\"authors\":\"T. Bravo, C. Maury\",\"doi\":\"10.1121/2.0001435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro-Perforated Panels constitute an alternative to classical porous materials in demanding environments due to fire-proofness, cleanability and lightweight properties. However, its performance is greatly determined by a proper selection of the constitutive physical factors. To find the optimal set of parameters, a combinatorial optimization problem has to be solved using a cost function that classically includes the absorption coefficient averaged over a frequency band. Recently, another criterion has been considered by the use of a causal integral that relates the thickness of the partition to the amount of absorption that can be achieved over a desired bandwidth. This provides a set of states that present critically-coupled resonant behavior and perfect absorption at the requested frequency while maximizing the total absorption. When considering sub-millimetric panel thickness or membranes, the effect of the panel vibrations has to be taken into account. In this study, we have extended the causality criterion to consider the effect of the panel vibration of the perforations impedance. Another model has also been examined to account for the cavities Helmholtz-type resonance and their influence on the corresponding critically-coupled states.\",\"PeriodicalId\":300779,\"journal\":{\"name\":\"180th Meeting of the Acoustical Society of America\",\"volume\":\"52 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"180th Meeting of the Acoustical Society of America\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/2.0001435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"180th Meeting of the Acoustical Society of America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/2.0001435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微穿孔板具有防火性、可清洁性和轻质性,是传统多孔材料在苛刻环境中的替代品。然而,其性能在很大程度上取决于本构物理因素的适当选择。为了找到最优的参数集,必须使用代价函数来解决组合优化问题,该函数通常包括在频带上平均的吸收系数。最近,通过使用因果积分考虑了另一个标准,该积分将隔板的厚度与在期望带宽上可以实现的吸收量联系起来。这提供了一组状态,在要求的频率上呈现临界耦合谐振行为和完美的吸收,同时最大限度地提高总吸收。当考虑亚毫米厚度的面板或膜时,必须考虑面板振动的影响。在本研究中,我们扩展了因果准则,以考虑穿孔阻抗对面板振动的影响。另一个模型也被用来解释空腔的亥姆霍兹型共振及其对相应的临界耦合态的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vibrational effects on the optimization of micro-perforated partitions based on a causality criterion
Micro-Perforated Panels constitute an alternative to classical porous materials in demanding environments due to fire-proofness, cleanability and lightweight properties. However, its performance is greatly determined by a proper selection of the constitutive physical factors. To find the optimal set of parameters, a combinatorial optimization problem has to be solved using a cost function that classically includes the absorption coefficient averaged over a frequency band. Recently, another criterion has been considered by the use of a causal integral that relates the thickness of the partition to the amount of absorption that can be achieved over a desired bandwidth. This provides a set of states that present critically-coupled resonant behavior and perfect absorption at the requested frequency while maximizing the total absorption. When considering sub-millimetric panel thickness or membranes, the effect of the panel vibrations has to be taken into account. In this study, we have extended the causality criterion to consider the effect of the panel vibration of the perforations impedance. Another model has also been examined to account for the cavities Helmholtz-type resonance and their influence on the corresponding critically-coupled states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Constant Pressure dB(A) and dB(C) frequency response of microphones and the expanded uncertainties involved therein Minimal time to determine direction of azimuthally moving sounds in moderately severe sensorineural hearing loss Simulations and case study of X-59 low-booms propagated through measured atmospheric profiles The effect of temporal diffusion on the ongoing precedence effect Positive aspects of teaching online during COVID-19: Zoom backgrounds, MannyCam, and increased student engagement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1