法规TL;DR:联邦公报条款的对抗性文本摘要

Filipo Sharevski, Peter Jachim, Emma Pieroni
{"title":"法规TL;DR:联邦公报条款的对抗性文本摘要","authors":"Filipo Sharevski, Peter Jachim, Emma Pieroni","doi":"10.1145/3474374.3486917","DOIUrl":null,"url":null,"abstract":"Short on time with a reduced attention span, people disengage from reading long text with a \"too long, didn't read\" justification. While a useful heuristic of managing reading resources, we believe that \"tl;dr\" is prone to adversarial manipulation. In a seemingly noble effort to produce a bite-sized segments of information fitting social media posts, an adversity could reduce a long text to a short but polarizing summary. In this paper we demonstrate an adversarial text summarization that reduces Federal Register long texts to summaries with obvious liberal or conservative leanings. Contextualizing summaries to a political agenda is hardly new, but a barrage of polarizing \"tl;dr\" social media posts could derail the public debate about important public policy matters with an unprecedented lack of effort. We show and elaborate on such example \"tl;dr\" posts to showcase a new and relatively unexplored avenue for information operations on social media.","PeriodicalId":319965,"journal":{"name":"Proceedings of the 3rd Workshop on Cyber-Security Arms Race","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation TL;DR: Adversarial Text Summarization of Federal Register Articles\",\"authors\":\"Filipo Sharevski, Peter Jachim, Emma Pieroni\",\"doi\":\"10.1145/3474374.3486917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short on time with a reduced attention span, people disengage from reading long text with a \\\"too long, didn't read\\\" justification. While a useful heuristic of managing reading resources, we believe that \\\"tl;dr\\\" is prone to adversarial manipulation. In a seemingly noble effort to produce a bite-sized segments of information fitting social media posts, an adversity could reduce a long text to a short but polarizing summary. In this paper we demonstrate an adversarial text summarization that reduces Federal Register long texts to summaries with obvious liberal or conservative leanings. Contextualizing summaries to a political agenda is hardly new, but a barrage of polarizing \\\"tl;dr\\\" social media posts could derail the public debate about important public policy matters with an unprecedented lack of effort. We show and elaborate on such example \\\"tl;dr\\\" posts to showcase a new and relatively unexplored avenue for information operations on social media.\",\"PeriodicalId\":319965,\"journal\":{\"name\":\"Proceedings of the 3rd Workshop on Cyber-Security Arms Race\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd Workshop on Cyber-Security Arms Race\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3474374.3486917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd Workshop on Cyber-Security Arms Race","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474374.3486917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于时间短,注意力持续时间短,人们会以“太长,没读”为理由,从阅读长文本中脱离出来。虽然这是管理阅读资源的一个有用的启发式方法,但我们认为“tl;dr”容易被对抗性操纵。在一个看似高尚的努力中,产生适合社交媒体帖子的一小段信息,逆境可以将长文本缩短为简短但两极分化的摘要。在本文中,我们展示了一种对抗性文本摘要,它将联邦公报的长文本减少为具有明显自由或保守倾向的摘要。将摘要与政治议程联系起来并不是什么新鲜事,但社交媒体上大量两极分化的“tl;dr”帖子可能会以前所未有的缺乏努力的方式破坏公众对重要公共政策问题的辩论。我们展示并详细阐述了这样的例子“tl;dr”帖子,以展示社交媒体上信息操作的一种新的、相对未被探索的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regulation TL;DR: Adversarial Text Summarization of Federal Register Articles
Short on time with a reduced attention span, people disengage from reading long text with a "too long, didn't read" justification. While a useful heuristic of managing reading resources, we believe that "tl;dr" is prone to adversarial manipulation. In a seemingly noble effort to produce a bite-sized segments of information fitting social media posts, an adversity could reduce a long text to a short but polarizing summary. In this paper we demonstrate an adversarial text summarization that reduces Federal Register long texts to summaries with obvious liberal or conservative leanings. Contextualizing summaries to a political agenda is hardly new, but a barrage of polarizing "tl;dr" social media posts could derail the public debate about important public policy matters with an unprecedented lack of effort. We show and elaborate on such example "tl;dr" posts to showcase a new and relatively unexplored avenue for information operations on social media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regulation TL;DR: Adversarial Text Summarization of Federal Register Articles Your Smart Contracts Are Not Secure: Investigating Arbitrageurs and Oracle Manipulators in Ethereum The More, the Better: A Study on Collaborative Machine Learning for DGA Detection Multi-Stage Attack Detection via Kill Chain State Machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1