基于鲁棒模糊神经网络的高非线性机电伺服系统控制

Y. Sato, H. Kawasaki
{"title":"基于鲁棒模糊神经网络的高非线性机电伺服系统控制","authors":"Y. Sato, H. Kawasaki","doi":"10.1109/SICE.2001.977855","DOIUrl":null,"url":null,"abstract":"The intelligent controls such as a neural network based control for mechatronic positioning servo systems have been researched actively in recent years because the mechanism design could not cope with the advanced requirements. This paper proposes a novel robust fuzzy-neural network based control for the mechatronic positioning servo systems that have nonlinear characteristics such as friction, backlash, variations of load and system parameters, and unknown disturbances. Computational simulation results for one-degree-of-freedom positioning system are shown to confirm the validity of the proposed controller.","PeriodicalId":415046,"journal":{"name":"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)","volume":"50 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust fuzzy neural network based control for mechatronic servo systems with high nonlinearity\",\"authors\":\"Y. Sato, H. Kawasaki\",\"doi\":\"10.1109/SICE.2001.977855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intelligent controls such as a neural network based control for mechatronic positioning servo systems have been researched actively in recent years because the mechanism design could not cope with the advanced requirements. This paper proposes a novel robust fuzzy-neural network based control for the mechatronic positioning servo systems that have nonlinear characteristics such as friction, backlash, variations of load and system parameters, and unknown disturbances. Computational simulation results for one-degree-of-freedom positioning system are shown to confirm the validity of the proposed controller.\",\"PeriodicalId\":415046,\"journal\":{\"name\":\"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)\",\"volume\":\"50 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.2001.977855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2001.977855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于神经网络的机电定位伺服系统智能控制由于机构设计不能满足先进的要求,近年来得到了广泛的研究。针对具有摩擦、间隙、载荷和系统参数变化以及未知干扰等非线性特性的机电定位伺服系统,提出了一种基于模糊神经网络的鲁棒控制方法。通过对一自由度定位系统的计算仿真,验证了所提控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust fuzzy neural network based control for mechatronic servo systems with high nonlinearity
The intelligent controls such as a neural network based control for mechatronic positioning servo systems have been researched actively in recent years because the mechanism design could not cope with the advanced requirements. This paper proposes a novel robust fuzzy-neural network based control for the mechatronic positioning servo systems that have nonlinear characteristics such as friction, backlash, variations of load and system parameters, and unknown disturbances. Computational simulation results for one-degree-of-freedom positioning system are shown to confirm the validity of the proposed controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An approximation to EMI noise problem to design an appropriate EMI filter for induction motor control systems Two kinds of sensor data fusion in target tracking Robust control of feedback linearizable system with the parameter uncertainty and input constraint Self-tuning fuzzy logic controller for direct torque control of slip energy recovery system The frequency-domain RLS algorithm with incremental hopping-index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1