学习使用机器学习惩罚逻辑模型进行分割

Yong Yue, H. Tagare
{"title":"学习使用机器学习惩罚逻辑模型进行分割","authors":"Yong Yue, H. Tagare","doi":"10.1109/CVPRW.2009.5204343","DOIUrl":null,"url":null,"abstract":"Classical maximum-a-posteriori (MAP) segmentation uses generative models for images. However, creating tractable generative models can be difficult for complex images. Moreover, generative models require auxiliary parameters to be included in the maximization, which makes the maximization more complicated. This paper proposes an alternative to the MAP approach: using a penalized logistic model to directly model the segmentation posterior. This approach has two advantages: (1) It requires fewer auxiliary parameters, and (2) it provides a standard way of incorporating powerful machine-learning methods into segmentation so that complex image phenomenon can be learned easily from a training set. The technique is used to segment cardiac ultrasound images sequences which have substantial spatio-temporal contrast variation that is cumbersome to model. Experimental results show that the method gives accurate segmentations of the endocardium in spite of the contrast variation.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"74 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Learning to segment using machine-learned penalized logistic models\",\"authors\":\"Yong Yue, H. Tagare\",\"doi\":\"10.1109/CVPRW.2009.5204343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical maximum-a-posteriori (MAP) segmentation uses generative models for images. However, creating tractable generative models can be difficult for complex images. Moreover, generative models require auxiliary parameters to be included in the maximization, which makes the maximization more complicated. This paper proposes an alternative to the MAP approach: using a penalized logistic model to directly model the segmentation posterior. This approach has two advantages: (1) It requires fewer auxiliary parameters, and (2) it provides a standard way of incorporating powerful machine-learning methods into segmentation so that complex image phenomenon can be learned easily from a training set. The technique is used to segment cardiac ultrasound images sequences which have substantial spatio-temporal contrast variation that is cumbersome to model. Experimental results show that the method gives accurate segmentations of the endocardium in spite of the contrast variation.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"74 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

经典的最大后验分割(MAP)使用生成模型对图像进行分割。然而,对于复杂的图像,创建易于处理的生成模型可能很困难。此外,生成模型要求在最大化过程中包含辅助参数,这使得最大化过程更加复杂。本文提出了一种替代MAP方法的方法:使用惩罚逻辑模型直接对分割后验进行建模。这种方法有两个优点:(1)它需要更少的辅助参数,(2)它提供了一种将强大的机器学习方法纳入分割的标准方法,以便可以从训练集中轻松学习复杂的图像现象。该技术用于分割心脏超声图像序列,这些图像序列具有大量的时空对比变化,难以建模。实验结果表明,该方法在对比度变化的情况下仍能准确地分割心内膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning to segment using machine-learned penalized logistic models
Classical maximum-a-posteriori (MAP) segmentation uses generative models for images. However, creating tractable generative models can be difficult for complex images. Moreover, generative models require auxiliary parameters to be included in the maximization, which makes the maximization more complicated. This paper proposes an alternative to the MAP approach: using a penalized logistic model to directly model the segmentation posterior. This approach has two advantages: (1) It requires fewer auxiliary parameters, and (2) it provides a standard way of incorporating powerful machine-learning methods into segmentation so that complex image phenomenon can be learned easily from a training set. The technique is used to segment cardiac ultrasound images sequences which have substantial spatio-temporal contrast variation that is cumbersome to model. Experimental results show that the method gives accurate segmentations of the endocardium in spite of the contrast variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1