使用深度学习模型进行花卉分类

S. Giraddi, S. Seeri, P. Hiremath, Jayalaxmi G.N
{"title":"使用深度学习模型进行花卉分类","authors":"S. Giraddi, S. Seeri, P. Hiremath, Jayalaxmi G.N","doi":"10.1109/ICSTCEE49637.2020.9277041","DOIUrl":null,"url":null,"abstract":"Deep learning techniques are used widespread for image recognition and classification problems. Gradually, deep learning architectures have modified to comprise more layers and become more robust model for classification problems. In this paper, the base VGG16 model is fine-tuned for the classification flowers into five categories, namely, Daisy, Dandelion, Sunflower, Rose and Tulip flowers. The fine-tuned VGG16 model is trained using 3520 flower images. The model is achieved a classification accuracy of 97.67% for validation set and 95.00% for testing dataset. The Kaggle dataset is used for training, validation and testing of the proposed fine-tuned VGG16 model. The goal of this work is to show that a proper modified VGG16 deep model, which is, pre-trained on ImageNet for image classification can be used for other image data set using very small dataset without over fitting. The VGG16 model uses mall size 3x3 filters.","PeriodicalId":113845,"journal":{"name":"2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)","volume":"298 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Flower Classification using Deep Learning models\",\"authors\":\"S. Giraddi, S. Seeri, P. Hiremath, Jayalaxmi G.N\",\"doi\":\"10.1109/ICSTCEE49637.2020.9277041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning techniques are used widespread for image recognition and classification problems. Gradually, deep learning architectures have modified to comprise more layers and become more robust model for classification problems. In this paper, the base VGG16 model is fine-tuned for the classification flowers into five categories, namely, Daisy, Dandelion, Sunflower, Rose and Tulip flowers. The fine-tuned VGG16 model is trained using 3520 flower images. The model is achieved a classification accuracy of 97.67% for validation set and 95.00% for testing dataset. The Kaggle dataset is used for training, validation and testing of the proposed fine-tuned VGG16 model. The goal of this work is to show that a proper modified VGG16 deep model, which is, pre-trained on ImageNet for image classification can be used for other image data set using very small dataset without over fitting. The VGG16 model uses mall size 3x3 filters.\",\"PeriodicalId\":113845,\"journal\":{\"name\":\"2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)\",\"volume\":\"298 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTCEE49637.2020.9277041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCEE49637.2020.9277041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

深度学习技术被广泛应用于图像识别和分类问题。逐渐地,深度学习架构被修改为包含更多的层,并成为分类问题的更健壮的模型。本文对基础VGG16模型进行了微调,将花分为雏菊、蒲公英、向日葵、玫瑰和郁金香五类。微调后的VGG16模型使用3520张花图像进行训练。该模型对验证集的分类准确率为97.67%,对测试集的分类准确率为95.00%。Kaggle数据集用于训练、验证和测试所提出的微调VGG16模型。本研究的目的是为了证明在ImageNet上进行图像分类预训练的适当修改的VGG16深度模型可以用于使用非常小的数据集的其他图像数据集,而不会过度拟合。VGG16型号使用小尺寸3x3过滤器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flower Classification using Deep Learning models
Deep learning techniques are used widespread for image recognition and classification problems. Gradually, deep learning architectures have modified to comprise more layers and become more robust model for classification problems. In this paper, the base VGG16 model is fine-tuned for the classification flowers into five categories, namely, Daisy, Dandelion, Sunflower, Rose and Tulip flowers. The fine-tuned VGG16 model is trained using 3520 flower images. The model is achieved a classification accuracy of 97.67% for validation set and 95.00% for testing dataset. The Kaggle dataset is used for training, validation and testing of the proposed fine-tuned VGG16 model. The goal of this work is to show that a proper modified VGG16 deep model, which is, pre-trained on ImageNet for image classification can be used for other image data set using very small dataset without over fitting. The VGG16 model uses mall size 3x3 filters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flower Classification using Deep Learning models An Unprecedented PSO-PID Optimized Glucose Homeostasis Improving elasticity in cloud with predictive algorithms A Second Order-Second Order Generalized Integrator for Three - Phase Single – Stage Multifunctional Grid-Connected SPV System Continuous Compliance model for Hybrid Multi-Cloud through Self-Service Orchestrator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1