利用扩展关联规则网络探索数据

Renan de Padua, Dario Brito Calçada, Verônica Oliveira de Carvalho, Solange Oliveira Rezende
{"title":"利用扩展关联规则网络探索数据","authors":"Renan de Padua, Dario Brito Calçada, Verônica Oliveira de Carvalho, Solange Oliveira Rezende","doi":"10.1109/bracis.2018.00064","DOIUrl":null,"url":null,"abstract":"In this paper, we presented the Extended Association Rule Network (ExARN) to structure, prune and analyze a set of association rules, aiming to build hypothesis candidates. The ExARN extends the ARN, proposed by [2], allowing a more complete exploration. We validate the ExARN using two databases: contact lenses and hayes-roth, both available online for download. The results were validated by comparing the ExARN to the conventional ARN and also by comparing the results with a decision tree algorithms. The approach presented promising results, showing its capability to explain a set of objective items, aiding the user on the hypothesis building.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"34 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exploring the Data Using Extended Association Rule Network\",\"authors\":\"Renan de Padua, Dario Brito Calçada, Verônica Oliveira de Carvalho, Solange Oliveira Rezende\",\"doi\":\"10.1109/bracis.2018.00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we presented the Extended Association Rule Network (ExARN) to structure, prune and analyze a set of association rules, aiming to build hypothesis candidates. The ExARN extends the ARN, proposed by [2], allowing a more complete exploration. We validate the ExARN using two databases: contact lenses and hayes-roth, both available online for download. The results were validated by comparing the ExARN to the conventional ARN and also by comparing the results with a decision tree algorithms. The approach presented promising results, showing its capability to explain a set of objective items, aiding the user on the hypothesis building.\",\"PeriodicalId\":405190,\"journal\":{\"name\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"34 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/bracis.2018.00064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/bracis.2018.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了扩展关联规则网络(ExARN)来构建、修剪和分析一组关联规则,旨在建立假设候选。ExARN扩展了[2]提出的ARN,允许更完整的探索。我们使用两个数据库来验证ExARN:隐形眼镜数据库和hayes-roth数据库,这两个数据库都可以在线下载。通过将ExARN与传统的ARN进行比较,并将结果与决策树算法进行比较,验证了结果。该方法呈现出令人鼓舞的结果,显示出其解释一组客观项目的能力,帮助用户建立假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the Data Using Extended Association Rule Network
In this paper, we presented the Extended Association Rule Network (ExARN) to structure, prune and analyze a set of association rules, aiming to build hypothesis candidates. The ExARN extends the ARN, proposed by [2], allowing a more complete exploration. We validate the ExARN using two databases: contact lenses and hayes-roth, both available online for download. The results were validated by comparing the ExARN to the conventional ARN and also by comparing the results with a decision tree algorithms. The approach presented promising results, showing its capability to explain a set of objective items, aiding the user on the hypothesis building.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1