用于数字数据信号建模和分析的马尔可夫链

R. Eier
{"title":"用于数字数据信号建模和分析的马尔可夫链","authors":"R. Eier","doi":"10.1109/WITS.1994.513913","DOIUrl":null,"url":null,"abstract":"Digital data transmission signals may be considered as some specific stochastic process controlled by a Markov chain. Briefly going into the presentation and evaluation of the power density spectra (PDS) of such processes, one of our major concerns deals with the computational effort. By some special grouping among the employed signal elements and a corresponding partitioning of the controlling transition matrix, the formula for the desired PDS can be simplified to an Euclidean vector norm expression. By means of several PDS graphs the relevance of such an analysis to evaluate or design real transmission systems may be appreciated.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"45 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Markov chains for modeling and analyzing digital data signals\",\"authors\":\"R. Eier\",\"doi\":\"10.1109/WITS.1994.513913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital data transmission signals may be considered as some specific stochastic process controlled by a Markov chain. Briefly going into the presentation and evaluation of the power density spectra (PDS) of such processes, one of our major concerns deals with the computational effort. By some special grouping among the employed signal elements and a corresponding partitioning of the controlling transition matrix, the formula for the desired PDS can be simplified to an Euclidean vector norm expression. By means of several PDS graphs the relevance of such an analysis to evaluate or design real transmission systems may be appreciated.\",\"PeriodicalId\":423518,\"journal\":{\"name\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"volume\":\"45 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WITS.1994.513913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数字数据传输信号可以看作是由马尔可夫链控制的特定随机过程。简要地介绍这些过程的功率密度谱(PDS)的表示和评估,我们主要关注的问题之一是计算工作。通过对所使用的信号元素进行特殊分组和对控制转移矩阵进行相应的划分,可以将期望的PDS公式简化为欧几里得向量范数表达式。通过几个PDS图,可以了解这种分析对评估或设计实际传输系统的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Markov chains for modeling and analyzing digital data signals
Digital data transmission signals may be considered as some specific stochastic process controlled by a Markov chain. Briefly going into the presentation and evaluation of the power density spectra (PDS) of such processes, one of our major concerns deals with the computational effort. By some special grouping among the employed signal elements and a corresponding partitioning of the controlling transition matrix, the formula for the desired PDS can be simplified to an Euclidean vector norm expression. By means of several PDS graphs the relevance of such an analysis to evaluate or design real transmission systems may be appreciated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large deviations and consistent estimates for Gibbs random fields Markov chains for modeling and analyzing digital data signals Maximized mutual information using macrocanonical probability distributions Coding for noisy feasible channels Identification via compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1