探索基于仿真的行动计划计划的鲁棒性:一个框架和一个例子

B. Chandrasekaran, Mark Goldman
{"title":"探索基于仿真的行动计划计划的鲁棒性:一个框架和一个例子","authors":"B. Chandrasekaran, Mark Goldman","doi":"10.1109/MCDM.2007.369435","DOIUrl":null,"url":null,"abstract":"Planning requires evaluating candidate plans multi-criterially, which in turn requires some kind of a causal model of the operational environment, whether the model is to be used as part of evaluation by humans or simulation by computers. However, there is always a gap - consisting of missing or erroneous information - between any model and the reality. One of the important sources of gaps in models is built-in assumptions about the world, e.g., enemy capabilities or intent in military planning. Some of the gaps can be handled by standard approaches to uncertainty, such as optimizing expected values of the criteria of interest based on assumed probability distributions. However, there are many problems, such as military planning, where it is not appropriate to choose the best plan based on such expected values, or where meaningful probability distributions are not available. Such uncertainties, often called \"deep uncertainties,\" require an approach to planning where the task is not choosing the optimal plan as much as a robust plan, one that would do well enough even in the presence of such uncertainties. Decision support systems should help the planner explore the robustness of candidate plans. In this paper, we illustrate this functionality, robustness exploration, in the domain of network disruption planning, an example of effect-based operations.","PeriodicalId":306422,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","volume":"27 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Exploring Robustness of Plans for Simulation-Based Course of Action Planning: A Framework and an Example\",\"authors\":\"B. Chandrasekaran, Mark Goldman\",\"doi\":\"10.1109/MCDM.2007.369435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planning requires evaluating candidate plans multi-criterially, which in turn requires some kind of a causal model of the operational environment, whether the model is to be used as part of evaluation by humans or simulation by computers. However, there is always a gap - consisting of missing or erroneous information - between any model and the reality. One of the important sources of gaps in models is built-in assumptions about the world, e.g., enemy capabilities or intent in military planning. Some of the gaps can be handled by standard approaches to uncertainty, such as optimizing expected values of the criteria of interest based on assumed probability distributions. However, there are many problems, such as military planning, where it is not appropriate to choose the best plan based on such expected values, or where meaningful probability distributions are not available. Such uncertainties, often called \\\"deep uncertainties,\\\" require an approach to planning where the task is not choosing the optimal plan as much as a robust plan, one that would do well enough even in the presence of such uncertainties. Decision support systems should help the planner explore the robustness of candidate plans. In this paper, we illustrate this functionality, robustness exploration, in the domain of network disruption planning, an example of effect-based operations.\",\"PeriodicalId\":306422,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making\",\"volume\":\"27 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCDM.2007.369435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2007.369435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

规划需要对候选计划进行多标准评估,这反过来又需要某种操作环境的因果模型,无论该模型是作为人类评估的一部分还是作为计算机模拟的一部分。然而,在任何模型和现实之间总是存在着由缺失或错误的信息组成的差距。模型中存在差距的一个重要来源是对世界的固有假设,例如,军事规划中的敌人能力或意图。一些差距可以通过不确定性的标准方法来处理,例如基于假设的概率分布优化感兴趣标准的期望值。然而,存在许多问题,例如军事规划,在这些问题中,根据这些期望值选择最佳计划是不合适的,或者在没有有意义的概率分布的情况下。这种不确定性,通常被称为“深度不确定性”,需要一种规划方法,在这种方法中,任务不是选择最优计划,而是选择一个健壮的计划,一个即使在存在这种不确定性的情况下也能做得足够好的计划。决策支持系统应该帮助计划者探索候选计划的稳健性。在本文中,我们说明了这种功能,鲁棒性探索,在网络中断规划领域,一个基于效果的操作的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring Robustness of Plans for Simulation-Based Course of Action Planning: A Framework and an Example
Planning requires evaluating candidate plans multi-criterially, which in turn requires some kind of a causal model of the operational environment, whether the model is to be used as part of evaluation by humans or simulation by computers. However, there is always a gap - consisting of missing or erroneous information - between any model and the reality. One of the important sources of gaps in models is built-in assumptions about the world, e.g., enemy capabilities or intent in military planning. Some of the gaps can be handled by standard approaches to uncertainty, such as optimizing expected values of the criteria of interest based on assumed probability distributions. However, there are many problems, such as military planning, where it is not appropriate to choose the best plan based on such expected values, or where meaningful probability distributions are not available. Such uncertainties, often called "deep uncertainties," require an approach to planning where the task is not choosing the optimal plan as much as a robust plan, one that would do well enough even in the presence of such uncertainties. Decision support systems should help the planner explore the robustness of candidate plans. In this paper, we illustrate this functionality, robustness exploration, in the domain of network disruption planning, an example of effect-based operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-criteria Set Partitioning for Portfolio Management: A Visual Interactive Method Exploring Robustness of Plans for Simulation-Based Course of Action Planning: A Framework and an Example On the Convergence of Multi-Objective Descent Algorithms Prediction of Stock Price Movements Based on Concept Map Information Interactive Utility Maximization in Multi-Objective Vehicle Routing Problems: A "Decision Maker in the Loop"-Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1