{"title":"探索基于仿真的行动计划计划的鲁棒性:一个框架和一个例子","authors":"B. Chandrasekaran, Mark Goldman","doi":"10.1109/MCDM.2007.369435","DOIUrl":null,"url":null,"abstract":"Planning requires evaluating candidate plans multi-criterially, which in turn requires some kind of a causal model of the operational environment, whether the model is to be used as part of evaluation by humans or simulation by computers. However, there is always a gap - consisting of missing or erroneous information - between any model and the reality. One of the important sources of gaps in models is built-in assumptions about the world, e.g., enemy capabilities or intent in military planning. Some of the gaps can be handled by standard approaches to uncertainty, such as optimizing expected values of the criteria of interest based on assumed probability distributions. However, there are many problems, such as military planning, where it is not appropriate to choose the best plan based on such expected values, or where meaningful probability distributions are not available. Such uncertainties, often called \"deep uncertainties,\" require an approach to planning where the task is not choosing the optimal plan as much as a robust plan, one that would do well enough even in the presence of such uncertainties. Decision support systems should help the planner explore the robustness of candidate plans. In this paper, we illustrate this functionality, robustness exploration, in the domain of network disruption planning, an example of effect-based operations.","PeriodicalId":306422,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","volume":"27 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Exploring Robustness of Plans for Simulation-Based Course of Action Planning: A Framework and an Example\",\"authors\":\"B. Chandrasekaran, Mark Goldman\",\"doi\":\"10.1109/MCDM.2007.369435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planning requires evaluating candidate plans multi-criterially, which in turn requires some kind of a causal model of the operational environment, whether the model is to be used as part of evaluation by humans or simulation by computers. However, there is always a gap - consisting of missing or erroneous information - between any model and the reality. One of the important sources of gaps in models is built-in assumptions about the world, e.g., enemy capabilities or intent in military planning. Some of the gaps can be handled by standard approaches to uncertainty, such as optimizing expected values of the criteria of interest based on assumed probability distributions. However, there are many problems, such as military planning, where it is not appropriate to choose the best plan based on such expected values, or where meaningful probability distributions are not available. Such uncertainties, often called \\\"deep uncertainties,\\\" require an approach to planning where the task is not choosing the optimal plan as much as a robust plan, one that would do well enough even in the presence of such uncertainties. Decision support systems should help the planner explore the robustness of candidate plans. In this paper, we illustrate this functionality, robustness exploration, in the domain of network disruption planning, an example of effect-based operations.\",\"PeriodicalId\":306422,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making\",\"volume\":\"27 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCDM.2007.369435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2007.369435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring Robustness of Plans for Simulation-Based Course of Action Planning: A Framework and an Example
Planning requires evaluating candidate plans multi-criterially, which in turn requires some kind of a causal model of the operational environment, whether the model is to be used as part of evaluation by humans or simulation by computers. However, there is always a gap - consisting of missing or erroneous information - between any model and the reality. One of the important sources of gaps in models is built-in assumptions about the world, e.g., enemy capabilities or intent in military planning. Some of the gaps can be handled by standard approaches to uncertainty, such as optimizing expected values of the criteria of interest based on assumed probability distributions. However, there are many problems, such as military planning, where it is not appropriate to choose the best plan based on such expected values, or where meaningful probability distributions are not available. Such uncertainties, often called "deep uncertainties," require an approach to planning where the task is not choosing the optimal plan as much as a robust plan, one that would do well enough even in the presence of such uncertainties. Decision support systems should help the planner explore the robustness of candidate plans. In this paper, we illustrate this functionality, robustness exploration, in the domain of network disruption planning, an example of effect-based operations.