{"title":"重新定义自然图像的自相似度,利用图信号梯度去噪","authors":"Jiahao Pang, Gene Cheung, Wei Hu, O. Au","doi":"10.1109/APSIPA.2014.7041627","DOIUrl":null,"url":null,"abstract":"Image denoising is the most basic inverse imaging problem. As an under-determined problem, appropriate definition of image priors to regularize the problem is crucial. Among recent proposed priors for image denoising are: i) graph Laplacian regularizer where a given pixel patch is assumed to be smooth in the graph-signal domain; and ii) self-similarity prior where image patches are assumed to recur throughout a natural image in non-local spatial regions. In our first contribution, we demonstrate that the graph Laplacian regularizer converges to a continuous time functional counterpart, and careful selection of its features can lead to a discriminant signal prior. In our second contribution, we redefine patch self-similarity in terms of patch gradients and argue that the new definition results in a more accurate estimate of the graph Laplacian matrix, and thus better image denoising performance. Experiments show that our designed algorithm based on graph Laplacian regularizer and gradient-based self-similarity can outperform non-local means (NLM) denoising by up to 1.4 dB in PSNR.","PeriodicalId":231382,"journal":{"name":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","volume":"35 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Redefining self-similarity in natural images for denoising using graph signal gradient\",\"authors\":\"Jiahao Pang, Gene Cheung, Wei Hu, O. Au\",\"doi\":\"10.1109/APSIPA.2014.7041627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image denoising is the most basic inverse imaging problem. As an under-determined problem, appropriate definition of image priors to regularize the problem is crucial. Among recent proposed priors for image denoising are: i) graph Laplacian regularizer where a given pixel patch is assumed to be smooth in the graph-signal domain; and ii) self-similarity prior where image patches are assumed to recur throughout a natural image in non-local spatial regions. In our first contribution, we demonstrate that the graph Laplacian regularizer converges to a continuous time functional counterpart, and careful selection of its features can lead to a discriminant signal prior. In our second contribution, we redefine patch self-similarity in terms of patch gradients and argue that the new definition results in a more accurate estimate of the graph Laplacian matrix, and thus better image denoising performance. Experiments show that our designed algorithm based on graph Laplacian regularizer and gradient-based self-similarity can outperform non-local means (NLM) denoising by up to 1.4 dB in PSNR.\",\"PeriodicalId\":231382,\"journal\":{\"name\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"volume\":\"35 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2014.7041627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2014.7041627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Redefining self-similarity in natural images for denoising using graph signal gradient
Image denoising is the most basic inverse imaging problem. As an under-determined problem, appropriate definition of image priors to regularize the problem is crucial. Among recent proposed priors for image denoising are: i) graph Laplacian regularizer where a given pixel patch is assumed to be smooth in the graph-signal domain; and ii) self-similarity prior where image patches are assumed to recur throughout a natural image in non-local spatial regions. In our first contribution, we demonstrate that the graph Laplacian regularizer converges to a continuous time functional counterpart, and careful selection of its features can lead to a discriminant signal prior. In our second contribution, we redefine patch self-similarity in terms of patch gradients and argue that the new definition results in a more accurate estimate of the graph Laplacian matrix, and thus better image denoising performance. Experiments show that our designed algorithm based on graph Laplacian regularizer and gradient-based self-similarity can outperform non-local means (NLM) denoising by up to 1.4 dB in PSNR.