{"title":"植入式系统的高能效感应链路优化","authors":"Jungsuk Kim, Hyunchul Kim, K. Pedrotti","doi":"10.1109/RWS.2011.5725496","DOIUrl":null,"url":null,"abstract":"This paper studies an inductive link optimization for implantable systems. By considering the relationship between wire diameter, number of turns, quality factor, coupling coefficient, and shape of coil, we can optimize the inductively coupled coils to maximize the power transfer efficiency in the face of geometric constraints. In this work, an intraocular prosthesis is used for a design example and power transfer efficiency of 45.8% is achieved where the secondary coil has a single layer of 11 turns, 0.064cm wire diameter, a self-inductance of 3.8µH, and Q of 65.","PeriodicalId":250672,"journal":{"name":"2011 IEEE Radio and Wireless Symposium","volume":"107 21","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Power-efficient inductive link optimization for implantable systems\",\"authors\":\"Jungsuk Kim, Hyunchul Kim, K. Pedrotti\",\"doi\":\"10.1109/RWS.2011.5725496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies an inductive link optimization for implantable systems. By considering the relationship between wire diameter, number of turns, quality factor, coupling coefficient, and shape of coil, we can optimize the inductively coupled coils to maximize the power transfer efficiency in the face of geometric constraints. In this work, an intraocular prosthesis is used for a design example and power transfer efficiency of 45.8% is achieved where the secondary coil has a single layer of 11 turns, 0.064cm wire diameter, a self-inductance of 3.8µH, and Q of 65.\",\"PeriodicalId\":250672,\"journal\":{\"name\":\"2011 IEEE Radio and Wireless Symposium\",\"volume\":\"107 21\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Radio and Wireless Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RWS.2011.5725496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Radio and Wireless Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2011.5725496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power-efficient inductive link optimization for implantable systems
This paper studies an inductive link optimization for implantable systems. By considering the relationship between wire diameter, number of turns, quality factor, coupling coefficient, and shape of coil, we can optimize the inductively coupled coils to maximize the power transfer efficiency in the face of geometric constraints. In this work, an intraocular prosthesis is used for a design example and power transfer efficiency of 45.8% is achieved where the secondary coil has a single layer of 11 turns, 0.064cm wire diameter, a self-inductance of 3.8µH, and Q of 65.